Component-based model order reduction procedure for large scales Thermo-Hydro-Mechanical systems

Giulia Sambataro^{1,2}

Advisors: A. Iollo^{1,2}, T.Taddei^{1,2}

¹IMB, University of Bordeaux ²Inria Bordeaux Sud-Ouest

PhD defense, December, 13th, 2022

Motivations

Management of radioactive waste materials. Solution by *Andra*¹:

- deep-depth repository (300 500 m) in geological media
- long term isolation

Figure 1: Packages of radioactive waste in repository structures (*alveoli*).

Giulia Sambataro PhD defense 1/50

¹French National Agency for radioactive waste management.

The THM model

- High temperature radioactive waste
- Hydro-mechanical response of the geological medium

The problem is described by **Thermo-Hydro-Mechanical** (**THM**) systems of PDEs:

- mechanics: linear elasticity
- hydraulics: water mass conservation law, Darcy's law
- heat transfer: energy conservation, heat conduction

Giulia Sambataro PhD defense 2 / 50

The THM model

- State variables $\underline{U} = [\underline{u}^{\mathrm{T}}, p_{\mathrm{w}}, T]^{\mathrm{T}};$
- Internal variables $\underline{W} = [\rho_{\rm w}, \varphi, h_{\rm w}, Q, \underline{M}_{\rm w}^{\rm T}, m_{\rm w}]^{\rm T}$.

Given $\mu \in \mathcal{P}$, find $\underline{\mathcal{U}}_{\mu}$ and $\underline{\mathcal{W}}_{\mu}$ such that

$$\left\{ \begin{array}{l} \mathcal{G}_{\mu}(\underline{\mathcal{U}}_{\mu},\partial_{t}\underline{\mathcal{U}}_{\mu},\underline{\mathcal{W}}_{\mu}) = 0, & \operatorname{in}\Omega\times(0,\mathcal{T}_{f}], \\ \\ \underline{\dot{\mathcal{W}}}_{\mu} = \mathcal{F}_{\mu}(\underline{\mathcal{U}}_{\mu},\underline{\mathcal{W}}_{\mu}), & \operatorname{in}\Omega\times(0,\mathcal{T}_{f}], \end{array} \right.$$

with
$$\underline{U}_{\mu}(\cdot,0) = \underline{U}_{0}$$
, $\underline{W}_{\mu}(\cdot,0) = \underline{W}_{0}$.

Challenges of the numerical model:

high nonlinearity, time dependency, high dimensionality

Giulia Sambataro PhD defense

The THM system

Parametrized system:

- geometric configuration (e.g. the number of the alveoli);
- material properties of the medium.

Figure 2: Domain Ω and boundaries $\Gamma_{r,1},\ldots,\Gamma_{r,Q_a}$.

Challenges

- uncertainty in the parameters: multi-query and almost real-time context
- geometric parameters cause topology changes

Giulia Sambataro PhD defense

Objective and contributions

Objective

develop a component-based (CB) model order reduction (MOR) procedure for parametrized problems in nonlinear mechanics, with emphasis on THM systems.

- Design of a monolithic MOR technique for THM systems ²
- Design of a CB-pMOR formulation for parametrized nonlinear (steady) elliptic PDEs. 3
- Extension of the CB-pMOR formulation to THM systems.

Giulia Sambataro PhD defense

²Iollo, Sambataro, Taddei, *IJNME*, 2022.

³Iollo, Sambataro, Taddei, *CMAME*, 2023.

Outline of the presentation

- A monolithic model reduction method for THM systems
- 2 CB-pMOR methodology for steady problems: application to a nonlinear elasticity problem
- CB-pMOR methodology for time-dependent problems with internal variables: application to the THM problem.
- Conclusions and perspectives

Giulia Sambataro PhD defense 6 / 50

- A monolithic model reduction method for the THM problem
 - Methodology
 - Numerical results
- 2 A one-shot overlapping Schwarz method for CB-pMOR
 - A one shot overlapping Schwarz formulation
 - CB-pMOR methodology
 - Numerical results
- 3 A one-shot overlapping Schwarz method for the THM system
 - Numerical results
- 4 Conclusions and perspectives

Giulia Sambataro PhD defense 7 / 50

Time-marching Galerkin ROM

The Reduced Basis method

Methodology: given a Hilbert space $(\mathcal{X}, \|\cdot\|)$ over $\Omega \subset \mathbb{R}^d$ and the parametric set $\mathcal{P} \subset \mathbb{R}^P$, $P \geq 1$,

for each $\mu \in \mathcal{P}$ and each time index $j=1,\dots,J_{\max}$ we seek

$$\underline{\hat{\mathcal{U}}}_{\mu}^{(j)} = \underline{Z}_{N} \alpha_{\mu}^{(j)} = \sum_{n=1}^{N} (\alpha_{\mu}^{(j)})_{n} \underline{\zeta}_{n}$$

where

- reduced coefficients $\alpha_{\mu}^{(j)}: \mathcal{P} \to \mathbb{R}^{N}$;
- reduced order basis (ROB) $\underline{Z}_N : \mathbb{R}^N \to \mathcal{Z}_N$ s.t. $\mathcal{Z}_N = \operatorname{span}\{\zeta_n\}_{n=1}^N \subset \mathcal{X}^{\mathrm{hf}}$.

Giulia Sambataro PhD defense

Time-marching Galerkin ROM

The Reduced Basis method

Rationale: we approximate the solution manifold

$$\mathcal{M} = \{ \underline{\mathcal{U}}_{\mu}^{(j)} \in \mathcal{X}^{\mathrm{hf}} : \mu \in \mathcal{P}, j \in \{1, \dots, J_{\mathrm{max}}\} \} \subset \mathcal{X}^{\mathrm{hf}},$$

by a **low-dimensional** linear space \mathcal{Z}_N , with $N \ll N^{\mathrm{hf}}$.

Linear compressibility is guaranteed by exponential decay of the *Kolmogorov n-width* for a wide range of elliptic and parabolic problems.

Giulia Sambataro PhD defense 8 / 50

Offline/online decomposition

Algorithm 1 Offline/online decomposition

Offline stage:

- 1: Define a properly selected training set Ξ_{train} and compute $\{\underline{\mathcal{U}}_{\mu}^{(j)}\}_{j\in \mathbf{I}_{\mathrm{s}}}$, $\mathbf{I}_{\mathrm{s}}\subset\{1,\ldots,\,J_{\mathrm{max}}\}\ \forall\,\mu\in\Xi_{\mathrm{train}}$
- 2: construct the ROB $Z_N : \mathbb{R}^N \to \mathcal{Z}_N \qquad \triangleright \text{ data compression}$
- 3: construct the ROM with hyper-reduction structures.

▶ hyper-reduction

Online stage:

4: Given $\mu \in \Xi_{\mathrm{test}}$, compute $\{\widehat{\pmb{\alpha}}_{\mu}^{(k)}\}_{j=1}^{J_{\mathrm{max}}}$ by solving the ROM

ROM=reduced order model

Giulia Sambataro PhD defense

Construction of the reduced space

Two challenges:

- lacktriangle sampling of \mathcal{P} ,
- 2 compression strategy.

For time-dependent problems: POD-Greedy method:4

- Greedy search driven by an error indicator
- POD-based data compression: find small orthonormal basis that is optimal in the $L^2(\Xi_{\text{train}})$ sense:

$$\mathcal{Z}_n = \arg\inf_{\mathcal{Z} \subset \mathcal{X}, \dim \mathcal{Z} = n} \frac{1}{n_{\mathrm{train}}} \sum_{k=1}^{n_{\mathrm{train}}} \|\underline{U}_k - \Pi_{\mathcal{Z}}\underline{U}_k\|^2$$

where
$$\Pi_{\mathcal{Z}_n}(\underline{U}_{\mu}^{(j)}) = \arg\min_{V \in \mathcal{Z}_n} \lVert \underline{U}_{\mu}^{(j)} - \underline{V} \rVert$$

Giulia Sambataro PhD defense

⁴Haasdonk, Ohlberger, M2AN, 2008; Haasdonk, ESAIM, 2013.

POD-Greedy algorithm

Figure 3: Adaptive algorithm based on POD-Greedy procedure

Giulia Sambataro PhD defense 11 / 50

Data compression

Motivation: constrained memory capacities of standard POD:

$$[\mathbf{Z},\ \boldsymbol{\lambda}] \leftarrow \texttt{POD}\left(\{\mathbb{U}_k\}_{k=1}^{n_{\text{train}}},(\cdot,\cdot),\textit{tol}_{\text{pod}}\right).$$

Given **Z** and the snapshots \mathbb{U}_{μ^\star} ,

hierarchical POD (HPOD)⁵

$$\mathbf{Z}' = [\mathbf{Z}, \mathbf{Z}^{ ext{new}}], \; \mathbf{Z}^{ ext{new}} \leftarrow ext{POD}\Big(\Big\{\Pi_{\mathcal{Z}^{orth}}\mathbb{U}_{\mu^\star}\Big\}_{k}, (\cdot, \cdot), \mathit{tol}_{ ext{pod}}\Big),$$

hierarchical approximate POD (HAPOD)⁶

$$[\mathbf{Z}', \boldsymbol{\lambda'}] \leftarrow \mathtt{POD}\Big(\Big\{\mathbb{U}_{\mu^\star}\Big\} \cup \Big\{\sqrt{\lambda_{\mathit{N}}}\, \boldsymbol{\zeta}_{\mathit{N}}\Big\}_{\mathit{N}=1}^n, (\cdot, \cdot), \mathit{tol}_{\mathrm{pod}}\Big)$$

Giulia Sambataro PhD defense

⁵Haasdonk, SIAM 2017.

⁶Himpe, Leibner, Rave, SIAM, 2018.

Reduced formulation

Galerkin projection

$$\left\{ \begin{array}{l} \mathcal{G}^{\mathrm{hf}}_{\mu}\left(\widehat{\mathbf{U}}^{(j)}_{\mu},\,\mathbf{U}^{(j-1)}_{\mu},\,\mathbf{W}^{(j)}_{\mu},\,\mathbf{W}^{(j-1)}_{\mu},\,\mathbf{V}\right) = 0,\;\forall\,\underline{V} \in \mathcal{Z}_{\textit{N}} \\ \mathbf{W}^{(j)}_{\mu} = \mathcal{F}^{\mathrm{hf}}_{\mu}(\mathbf{U}^{(j)}_{\mu},\mathbf{U}^{(j-1)}_{\mu},\mathbf{W}^{(j-1)}_{\mu}) \end{array} \right.$$

System of N equations to be solved, for $N \ll N^{\rm hf}$.

 Alternative reduced formulation: minimum residual formulation.

⁷Farhat et al, JCP, 2013.

Giulia Sambataro PhD defense

Galerkin ROM

Computational bottleneck: integration over the full mesh; proposed solution: integration on a reduced mesh.

High-fidelity residual:

$$\mathcal{R}_{\mu}^{\mathrm{hf}}\left(\mathbb{U}_{\mu},\mathbf{V}\right) = \sum_{k=1}^{N_{\mathrm{e}}} \ r_{\mu,k}^{\mathrm{hf}}\big(\mathbf{E}_{k}\mathbf{U}_{\mu}^{(j)},\mathbf{E}_{k}\mathbf{U}_{\mu}^{(j-1)},\big(\mathbf{W}_{\mu}^{(j)}\big)_{\cdot,k,\cdot},\big(\mathbf{W}_{\mu}^{(j-1)}\big)_{\cdot,k,\cdot},\mathbf{E}_{k}\mathbf{V}.\big)$$

Empirical quadrature residual:

$$\mathcal{R}_{\mu}^{\mathrm{eq}}\left(\hat{\mathbb{U}}_{\mu},\boldsymbol{\mathsf{V}}\right) \, = \! \sum_{k \in \mathbb{I}_{\mathrm{eq}}} \, \rho_{k}^{\mathrm{eq}} \, \, r_{\mu,k}^{\mathrm{hf}}\left(\cdot,\cdot,\cdot,\cdot,\cdot\right)$$

where
$$\boldsymbol{\rho}^{\mathrm{eq}} = [\rho_1^{\mathrm{eq}},...,\rho_{N_{\mathrm{e}}}^{\mathrm{eq}}]^T$$
 s.t. $\rho_k^{\mathrm{eq}} = 0$ if $k \notin \mathbf{I}_{\mathrm{eq}}$, $\boldsymbol{\rho}^{\mathrm{eq}} \geq \mathbf{0}$.

Question: choice of ρ^{eq} .

Giulia Sambataro PhD defense 14 / 50

Hyper-reduction

EQ procedure

Find $ho^{\mathrm{eq}} \in \mathbb{R}^{\mathrm{e}}$ s.t.

- \bullet $\| \boldsymbol{\rho}^{\mathrm{eq}} \|_{0}$ is as small as possible;
- 2 the entries of $ho^{\rm eq}$ are non-negative;
- **3** constant-function constraint: ⁸

$$\left|\sum_{k=1}^{N_{
m e}}\!\!
ho_k^{
m eq}|\mathtt{D}_k|-|\Omega|
ight|\ll 1;$$

manifold accuracy constraint:

$$\left\| \left(\mathbf{J}_{\mu}^{\mathrm{hf}} \left(\boldsymbol{\alpha}_{\mathrm{train}}^{(j)} \right) \right)^{-1} \left(\widehat{\mathbf{R}}_{\mu}^{\mathrm{hf}} \left(\boldsymbol{\alpha}_{\mathrm{train}}^{(j)} \right) - \widehat{\mathbf{R}}_{\mu}^{\mathrm{eq}} \left(\boldsymbol{\alpha}_{\mathrm{train}}^{(j)} \right) \right) \right\|_{2} \ll 1.$$

Giulia Sambataro PhD defense 15 / 50

⁸Farhat et al, IJNME, 2015; Yano, Patera, CMAME, 2019; Ryckelynck, IJNME, 2009.

Hyper-reduction

Sparse representation problem (NP-hard)⁹

$$\operatorname{find} \boldsymbol{\rho}^{\operatorname{eq}} \in \arg \min_{\boldsymbol{\rho} \in \mathbb{R}^{N_{\operatorname{e}}}} \lVert \boldsymbol{\rho} \rVert_0 \operatorname{s.t.} \ \begin{cases} \boldsymbol{\rho} \geq \mathbf{0} \\ \lVert \mathbf{C} \boldsymbol{\rho} - \mathbf{b} \rVert_* \leq \delta, \end{cases}$$

for a suitable choices of the matrix \mathbf{C} , the vector \mathbf{b} , the norm $\|\cdot\|_*$, and the tolerance δ .

Inexact non-negative least squares (NNLS) problem

$$\min_{oldsymbol{
ho} \in \mathbb{R}^{N_{\mathrm{e}}}} \lVert \mathbf{C} oldsymbol{
ho} - \mathbf{b}
Vert
Vert_2 \, \mathrm{s.t.} \, oldsymbol{
ho} \geq \mathbf{0}.$$

⁹Lawson CL. Hanson RJ. SIAM 1974: Farhat et al. IJNME. 2015.

Giulia Sambataro PhD defense

Error indicator

Goal: find an inexpensive and accurate indicator of the true error

$$E_{\mu} := \frac{\sqrt{\sum_{j=1}^{J_{\max}} \left(t^{(j)} - t^{(j-1)}\right) \left\|\underline{\mathcal{U}}_{\mu}^{(j)} - \underline{\widehat{\mathcal{U}}}_{\mu}^{(j)}\right\|^2}}{\sqrt{\sum_{j=1}^{J_{\max}} \left(t^{(j)} - t^{(j-1)}\right) \left\|\underline{\mathcal{U}}_{\mu}^{(j)}\right\|^2}}$$

First proposal: time-discrete $L^2(0, T_f; \mathcal{Y}')$ residual indicator ¹⁰

$$\Delta_{\mu}^{\mathrm{hf}}(\mathbb{U}) \ = \ \sqrt{\sum_{j=1}^{J_{\mathrm{max}}} \left(t^{(j)} - t^{(j-1)}
ight) \left(\sup_{\underline{V} \in \mathcal{Y} \setminus \{0\}} \ rac{\mathcal{R}_{\mu}^{\mathrm{hf}}(\underline{U}^{(j)},\underline{V})}{\|\underline{V}\|_{\mathcal{Y}}}
ight)^2}.$$

Giulia Sambataro PhD defense

¹⁰Haasdonk, Ohlberger, M2AN, 2008.

Error indicator

Our proposal: time-average hyper-reduced error indicator ¹¹

$$\Delta_{\mu}\left(\mathbb{U}_{\mu},\mathbb{W}_{\mu}\right) \; = \; \sup_{\underline{\mathcal{V}}\in\mathcal{Y}_{\textit{M}}\setminus\{0\}} \;\; \frac{\mathcal{R}_{\mathrm{avg},\mu}^{\mathrm{eq,r}}\left(\mathbb{U}_{\mu},\mathbb{W}_{\mu},\underline{\mathcal{V}}\right)}{\|\underline{\mathcal{V}}\|},$$

where

$$\mathcal{R}_{\mathrm{avg},\mu}^{\mathrm{eq}}\big(\mathbb{U}_{\mu},\mathbb{W}_{\mu},\underline{\mathit{V}}\big) := \sum_{j=1}^{J_{\mathrm{max}}} (t^{(j)} - t^{(j-1)}) \mathcal{R}_{\mu}^{\mathrm{eq}}\big(\underline{\mathit{U}}_{\mu}^{(j)},\underline{\mathit{U}}_{\mu}^{(j-1)},\underline{\mathit{W}}_{\mu}^{(j)},\underline{\mathit{W}}_{\mu}^{(j-1)},\underline{\mathit{V}}\big)$$

Giulia Sambataro PhD defense

¹¹Fick et al. JCP. 2018.

Numerical setting

The THM problem

- Newton's method with line-search;
- Implicit Euler time discretization, with $J_{
 m max}=100$ uniform time steps;
- p = 3 FE discretization for the displacement, p = 2 for pressure and temperature.

Parametrization: Young's modulus E, Poisson's ratio ν in the region UA, thermic factor τ and the constant $C_{\rm al}$.

$$(E_1, \nu_1, \tau, C_{al}) \stackrel{\text{iid}}{\sim} \mathcal{U}([857.52, 1.16 \cdot 10^3] \times [0.25, 0.35] \times [4.53, 6.13] \times [0.39, 0.52])$$

Giulia Sambataro PhD defense 19 / 50

Error estimation

Figure 4: correlation between the time-discrete $L^2(0, T_f; \mathcal{Y}')$ with respect to the true relative error E_{μ} . (a): $L^2(0, T_f; \mathcal{Y}')$, (b),(c): Δ_{μ} .

Giulia Sambataro PhD defense 20 / 50

Prediction tests

Figure 5: parametric problem:out-of-sample performance of the ROM parametric problem obtained using the POD-Greedy algorithm.

Comparison with strong POD Greedy.

Giulia Sambataro PhD defense 21 / 50

- A monolithic model reduction method for the THM problem
 - Methodology
 - Numerical results
- 2 A one-shot overlapping Schwarz method for CB-pMOR
 - A one shot overlapping Schwarz formulation
 - CB-pMOR methodology
 - Numerical results
- 3 A one-shot overlapping Schwarz method for the THM system
 - Numerical results
- 4 Conclusions and perspectives

Giulia Sambataro PhD defense 22 / 50

Foundations of the method

We consider a steady problem of the type

find
$$u_{\mu} \in \mathcal{X}$$
: $\mathcal{G}_{\mu}(u_{\mu}, v) = 0 \ \forall v \in \mathcal{Y}$,

with (or without) Dirichlet boundary conditions on a portion of the domain $\Gamma_{\rm dir}\subset\partial\Omega$. If $\mathcal{X}=H^1$, the test space \mathcal{Y} is set equal to $H^1_{\Gamma_{\rm dir},0}$.

Giulia Sambataro PhD defense 23 / 50

Foundations of the method

Let us consider the Overlapping Schwarz method

$$\left\{ \begin{array}{l} \text{find} \ \ u_1^{(k)} \in \mathcal{X}_1 \ : \ \mathcal{G}_1(u_1^{(k)},v) = 0 \ \ \forall \ v \in \mathcal{X}_{1,0}, \ \ u_1^{(k)}|_{\Gamma_1} = u_2^{(k-1)}; \\ \\ \text{find} \ \ u_2^{(k)} \in \mathcal{X}_2 \ : \ \mathcal{G}_2(u_2^{(k)},v) = 0 \ \ \forall \ v \in \mathcal{X}_{2,0}, \ \ u_2^{(k)}|_{\Gamma_2} = \begin{cases} u_1^{(k)} \\ u_1^{(k-1)}, \end{cases} \right.$$

where $\mathcal{X}_{i,0} = \{ v \in \mathcal{X}_i : v |_{\Gamma_i} = 0 \}.$

Convergence of the OS iterations to a limit state (u_1^*, u_2^*) implies that $||u_1^* - u_2^*||_{L^2(\Gamma_1 \cup \Gamma_2)} = 0$.

Proposal: one-shot overlapping Schwarz (OS2) method MOR constrained optimization formulation

Giulia Sambataro PhD defense 24 / 50

CB full-order model

Given
$$\mu = (\mu_1, \mu_2) \in \mathcal{P} = \bigotimes_{i=1}^2 \mathcal{P}^i$$
, find $u^{\mathrm{hf}} = (u_1, u_2) \in \mathcal{X} := \bigotimes_{i=1}^2 \mathcal{X}_i$ to minimize

OS2 constrained optimization statement

$$\min_{u \in \mathcal{X}} \frac{1}{2} \left(\|u_1 - u_2\|_{L^2(\Gamma_1)}^2 + \|u_2 - u_1\|_{L^2(\Gamma_2)}^2 \right)
\text{s.t.}$$

$$\mathcal{G}_1(u_1, v_1) = 0 \quad \forall v_1 \in \mathcal{X}_{1,0},
\mathcal{G}_2(u_2, v_2) = 0 \quad \forall v_2 \in \mathcal{X}_{2,0}$$

Giulia Sambataro PhD defense 25 / 50

Solution decomposition

For i = 1, 2, given instantiated spaces $\mathcal{X}_i \subset [H^1_{0,\Gamma_i^{\mathrm{dir}}}]^D$,

- Port space $\mathcal{U}_i = \{v|_{\Gamma_i} : v \in \mathcal{X}_i\} \subset [H^{1/2}(\Gamma_i)]^D$
- Bubble space $\mathcal{X}_{i,0} = \{ v \in \mathcal{X}_i : v |_{\Gamma_i} = 0 \}$

Figure 6: Sketch of bubble and port nodes associated with (a): $\mathcal{X}_{1,0}$, Γ_1 and (b): $\mathcal{X}_{2,0}$, Γ_2 .

Giulia Sambataro PhD defense 26 / 50

Solution decomposition

Given $w \in \mathcal{U}_i$ and continuous extension operator $E_i : \mathcal{U}_i \to \mathcal{X}_i$,

$$u_i = \boxed{\mathbb{F}_i(w)} + \boxed{\mathbb{E}_i w}$$
bubble port

where $E_i: \mathcal{U}_i \to \mathcal{X}_{i,0}$ is the **continuous extension operator**:

$$(E_i w, v) = 0 \forall v \in \mathcal{X}_{i,0}, E_i w|_{\Gamma_i} = w;$$

 $F_i: \mathcal{U}_i \to \mathcal{X}_{i,0}$ is the **port-to-bubble maps.**

The variational forms $\mathcal{G}_i: \mathcal{X}_i \times \mathcal{X}_{i,0} \to \mathbb{R}$ satisfy ¹²

$$G_i(F_i(w) + E_i w, v) = 0 \quad \forall v \in \mathcal{X}_{i,0}.$$

Giulia Sambataro PhD defense

¹²Huynh et al, ESAIM, 2013.

CB full-order model

Find
$$u^{\mathrm{hf,p}} = \left(u_1^{\mathrm{hf,p}}, u_2^{\mathrm{hf,p}}\right) \in \mathcal{U} := \bigotimes_{i=1}^2 \mathcal{U}_i$$
 to minimize

Unconstrained optimization statement

$$\min_{u^{\mathrm{p}} \in \mathcal{U}} \frac{1}{2} \Big(\| \mathbf{E}_{1} u_{1}^{\mathrm{p}} + \mathbf{F}_{1} (u_{1}^{\mathrm{p}}) - \mathbf{E}_{2} u_{2}^{\mathrm{p}} - \mathbf{F}_{2} (u_{2}^{\mathrm{p}}) \|_{L^{2}(\Gamma_{1})}^{2} + \\
\| \mathbf{E}_{2} u_{2}^{\mathrm{p}} + \mathbf{F}_{2} (u_{2}^{\mathrm{p}}) - \mathbf{E}_{1} u_{1}^{\mathrm{p}} - \mathbf{F}_{1} (u_{1}^{\mathrm{p}}) \|_{L^{2}(\Gamma_{2})}^{2} \Big)$$

- Nonlinear least-squares problem
- Methods: Gauss-Newton (or Quasi-Newton)

Giulia Sambataro PhD defense 28 / 50

Archetype components

For a **reference value** of geometric parameter Q_a we define **archetype** components:

Figure 7: Archetype library \mathcal{L} .

Giulia Sambataro PhD defense 29 / 50

Instantiated components

For any value of interest of geometric parameter Q_a we construct **instantiated** components:

Figure 8: Instatiated (overlapping) subdomains ω_i

Giulia Sambataro PhD defense 30 / 50

Offline/Online CB-pMOR procedure

Algorithm 2 Offline/online CB-pMOR procedure

Offline stage:

- 1: A library \mathcal{L} of **archetype components** is defined
- 2: for $\mu \in \Xi_{\text{train}} \subset \mathcal{P}$ do
- 3: Generate local ROBs and ROMs ▷ localised training
- 4: endfor
 - **Online stage:** for any new $\mu \in \Xi_{\text{test}} \subset \mathcal{P}$
- 5: A partition $\{\Omega_i\}_{i=1}^{N_{\mathrm{dd}}}$ is instantiated
- 6: Compute the global solution u_{μ} \triangleright coupling of local ROMs

Giulia Sambataro PhD defense 31/50

MOR approximation for OS2

Port reduction

Port spaces $\mathcal{Z}_{i}^{p} \subset \mathcal{U}_{i}$, $\mathcal{W}_{i}^{p} = \{ \mathbb{E}_{i} \zeta : \zeta \in \mathcal{Z}_{i}^{p} \subset \mathcal{U}_{i} \} \subset \mathcal{X}_{i}$, Port ROB $W_{i}^{p} : \mathbb{R}^{m} \to W_{i}^{p}$

Giulia Sambataro PhD defense 32 / 50

MOR approximation for OS2

Port reduction

Port spaces $\mathcal{Z}_{i}^{p} \subset \mathcal{U}_{i}$, $\mathcal{W}_{i}^{p} = \{ \mathbb{E}_{i} \zeta : \zeta \in \mathcal{Z}_{i}^{p} \subset \mathcal{U}_{i} \} \subset \mathcal{X}_{i}$, Port ROB $W_{i}^{p} : \mathbb{R}^{m} \to W_{i}^{p}$

Reduction of local maps Approximate port-to-bubble map $\widehat{F}_i : \mathbb{R}^m \to \mathbb{R}^n$ is s.t.

$$\widehat{\mathbf{R}}_i\Big(\widehat{\mathbf{F}}_i(\boldsymbol{\beta}_i), \boldsymbol{\beta}_i\Big) = 0$$

where local residuals $\widehat{\mathbf{R}}_i : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$ are s.t.

$$\left(\widehat{\mathsf{R}}_i(oldsymbol{lpha},oldsymbol{eta})
ight)_j = \mathcal{G}_i(\hat{u}_i(oldsymbol{lpha},oldsymbol{eta}),\,\zeta_{i,j}^{\mathrm{b}}),\,i=1,2,\,j=1,\ldots,n$$

Giulia Sambataro PhD defense 32 / 50

MOR approximation for OS2

Port reduction

Port spaces $\mathcal{Z}_{i}^{p} \subset \mathcal{U}_{i}$, $\mathcal{W}_{i}^{p} = \{ \mathbb{E}_{i} \zeta : \zeta \in \mathcal{Z}_{i}^{p} \subset \mathcal{U}_{i} \} \subset \mathcal{X}_{i}$, Port ROB $W_{i}^{p} : \mathbb{R}^{m} \to W_{i}^{p}$

Reduction of local maps Approximate port-to-bubble map $\widehat{F}_i : \mathbb{R}^m \to \mathbb{R}^n$ is s.t.

$$\widehat{\mathbf{R}}_i\Big(\widehat{\mathbf{F}}_i(\boldsymbol{\beta}_i), \boldsymbol{\beta}_i\Big) = 0$$

where local residuals $\widehat{\mathbf{R}}_i : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$ are s.t.

$$\left(\widehat{\mathsf{R}}_i(oldsymbol{lpha},oldsymbol{eta})
ight)_j = \mathcal{G}_i(\hat{u}_i(oldsymbol{lpha},oldsymbol{eta}),\,\zeta_{i,j}^{\mathrm{b}}),\,i=1,2,\,j=1,\ldots,n$$

$$\hat{u}_i(\boldsymbol{\alpha}_i,\boldsymbol{\beta}_i) = Z_i^b \boldsymbol{\alpha}_i + W_i^p \boldsymbol{\beta}_i, \quad i = 1, 2$$

Giulia Sambataro PhD defense 32 / 50

ROM OS2 formulation

Find
$$\widehat{m{\beta}}=[\widehat{m{\beta}}_1,\widehat{m{\beta}}_2]\in\mathbb{R}^{M:=2m}$$
 such that

ROM OS2 unconstrained statement

$$egin{aligned} \widehat{oldsymbol{eta}} &\in rg\min_{oldsymbol{eta} \in \mathbb{R}^M} rac{1}{2} \Bigg(\|Z_1^{ ext{b}} \widehat{\mathbf{F}}_1(oldsymbol{eta}_1) + W_1^{ ext{p}} oldsymbol{eta}_1 - Z_2^{ ext{b}} \widehat{\mathbf{F}}_2(oldsymbol{eta}_2) - W_2^{ ext{p}} oldsymbol{eta}_2 \|_{L^2(\Gamma_{1,2})}^2 + \ & \|Z_2^{ ext{b}} \widehat{\mathbf{F}}_2(oldsymbol{eta}_2) + W_2^{ ext{p}} oldsymbol{eta}_2 - Z_1^{ ext{b}} \widehat{\mathbf{F}}_1(oldsymbol{eta}_1) - W_1^{ ext{p}} oldsymbol{eta}_1 \|_{L^2(\Gamma_{2,1})}^2 \Bigg) \end{aligned}$$

13

Giulia Sambataro PhD defense 33 / 50

¹³To simplify notation, $n_1 = n_2 = n$, $m_1 = m_2 = m$.

Hyper-reduced formulation

Objectives:

- speed up assembling of local ROMs
- speed up evaluation of the objective function

Methods:

- element-wise empirical quadrature (EQ) procedure
- 2 EQ, variant of empirical interpolation method (EIM) (14)

Figure 9: Sampled elements and port quadrature points in a component.

Giulia Sambataro PhD defense

34 / 50

¹⁴Barrault et al., C.R.M., 2004

Case study: nonlinear (neo-Hookean) elasticity

$$\begin{cases}
-\nabla \cdot P(F(u)) = 0 & \text{in } \Omega \\
u \cdot \mathbf{n} = 0 & \text{on } \Gamma_{s} \\
P(F(u))\mathbf{n} = g_{r} = [0, -s]^{T} & \text{on } \Gamma_{r} \\
P(u)\mathbf{n} = g_{\text{top}} = [0, 4(x - 1/2)(x + 1/2)]^{T} & \text{on } \Gamma_{\text{top}} \\
u = 0 & \text{on } \Gamma_{\text{btm}}
\end{cases}$$

$$P(u) = \lambda_2 \left(F(u) - F(u)^{-T} \right) + \lambda_1 \log \left(\det(F(u)) \right) F(u)^{-T}$$

35 / 50

Giulia Sambataro PhD defense

Case study

Parameters distributions

$$(E_1, E_2, E_3, s) \stackrel{\text{iid}}{\sim} \text{Uniform} ([25, 30] \times [10, 20]^2 \times [0.4, 1]),$$
 $Q_{\text{a}} \stackrel{\text{iid}}{\sim} \text{Uniform} (\{2, \dots, 7\})$

Training global parameters $\Xi_{\mathrm{train}} = \{\mu^{(k)}\}_{k=1}^{n_{\mathrm{train}}}$, $n_{\mathrm{train}} = 70$

Out-of-sample global parameters $\Xi_{\mathrm{test}} = \{\widetilde{\mu}^{(j)}\}_{j=1}^{n_{\mathrm{test}}}$, $n_{\mathrm{test}} = 20$

Giulia Sambataro PhD defense 36 / 50

Numerical setting

Out-of-sample average prediction error

$$E_{\mathrm{avg}} := \frac{1}{n_{\mathrm{test}}} \; \sum_{\mu \in \Xi_{\mathrm{test}}} \; \frac{ \| \mathtt{P}_{\mathrm{pu}}[u_{\mu}^{\mathrm{hf}}] - \mathtt{P}_{\mathrm{pu}}[\widehat{u}_{\mu}] \|_{H^{1}(\Omega)} }{ \| \mathtt{P}_{\mathrm{pu}}[u_{\mu}^{\mathrm{hf}}] \|_{H^{1}(\Omega)} }.$$

where $P_{\mathrm{pu}}[u] := \sum_{i=1}^{N_{\mathrm{dd}}} \phi_i \, u_i \in H^1(\Omega)$ is the partition of unity operator.

ullet P2 FE discretization with $N_{
m int}^{
m e}=1120$ and $N_{
m ext}^{
m e}=3960$ elements.

Giulia Sambataro PhD defense 37 / 50

ROM OS2: hyper-reduction

Figure 10: EIM and EQ. EQ tolerance $tol_{eq} = 10^{-10}$ for local problems and $tol_{eq,p} = 10^{-4}$, $tol_{eq,p} = 10^{-6}$ for o.f. (EQ+EQ).

Giulia Sambataro PhD defense 38 / 50

ROM OS2: speedup

Figure 11: speedup($N_{
m dd}$) := $\frac{t_{
m hf(N_{
m dd})}}{t_{
m OS2}(N_{
m dd})}$; we set m=n=16, EQ tolerance $tol_{
m eq}=10^{-10}$.

Giulia Sambataro PhD defense 39 / 50

Optimization strategy

function

Figure 12: comparison between OS2 with Gauss-Newton, quasi-Newton, OS.

Giulia Sambataro PhD defense 40 / 50

- 1 A monolithic model reduction method for the THM problem
 - Methodology
 - Numerical results
- 2 A one-shot overlapping Schwarz method for CB-pMOR
 - A one shot overlapping Schwarz formulation
 - CB-pMOR methodology
 - Numerical results
- 3 A one-shot overlapping Schwarz method for the THM system
 - Numerical results
- 4 Conclusions and perspectives

Giulia Sambataro PhD defense 41 / 50

Formulation

Given
$$\mu = (\mu_1, \mu_2) \in \mathcal{P} = \bigotimes_{i=1}^2 \mathcal{P}^i$$
, find $\overrightarrow{\underline{\mathbb{U}}} = \{\underline{\mathbb{U}}_1, \underline{\mathbb{U}}_2\} \subset \mathcal{X}$, with $\mathcal{X} = \bigotimes_{i=1}^2 \mathcal{X}_i$ that solves for $j = 1, \ldots, J_{\max}$

Constrained optimization statement

$$\min_{\underline{\underline{U}^{(j)}} \in \mathcal{X}} \frac{1}{2} \left(\|\underline{\underline{U}}_1^{(j)} - \underline{\underline{U}}_2^{(j)}\|_{L^2(\Gamma_1)}^2 + \|\underline{\underline{U}}_2^{(j)} - \underline{\underline{U}}_1^{(j)}\|_{L^2(\Gamma_2)}^2 \right)$$

s.t.

$$\begin{split} \mathcal{G}_1^{(j)}(\underline{U}_1^{(j)},\underline{V}_1) &= 0 \ \forall \underline{V}_1 \in \mathcal{X}_{1,0}, \\ \mathcal{G}_2^{(j)}(\underline{U}_2^{(j)},\underline{V}_2) &= 0 \ \forall \underline{V}_2 \in \mathcal{X}_{2,0} \end{split}$$

Giulia Sambataro PhD defense 42 / 50

Formulation

Given
$$\mu = (\mu_1, \mu_2) \in \mathcal{P} = \bigotimes_{i=1}^2 \mathcal{P}^i$$
, find $\overrightarrow{\underline{\mathbb{U}}} = \{\underline{\mathbb{U}}_1, \underline{\mathbb{U}}_2\} \subset \mathcal{X}$, with $\mathcal{X} = \bigotimes_{i=1}^2 \mathcal{X}_i$ that solves for $j = 1, \ldots, J_{\max}$

Constrained optimization statement

$$\min_{\underline{\underline{U}^{(j)} \in \mathcal{X}}} \frac{1}{2} \left(\| \underline{\underline{U}_{1}^{(j)}} - \underline{\underline{U}_{2}^{(j)}} \|_{L^{2}(\Gamma_{1})}^{2} + \| \underline{\underline{U}_{2}^{(j)}} - \underline{\underline{U}_{1}^{(j)}} \|_{L^{2}(\Gamma_{2})}^{2} \right)$$
s.t.

$$\mathcal{G}_1^{(j)}(\underline{U}_1^{(j)},\underline{V}_1) = 0 \quad \forall \, \underline{V}_1 \in \mathcal{X}_{1,0},$$

$$\mathcal{G}_2^{(j)}(\underline{U}_2^{(j)},\underline{V}_2) = 0 \quad \forall \, \underline{V}_2 \in \mathcal{X}_{2,0}$$

where internal variables only enter the constraints:

$$\mathcal{G}_{i}^{(j)}(\underline{U}_{i}^{(j)},\underline{V}) = \mathcal{G}_{i}(\underline{U}_{i}^{(j)},\underline{U}_{i}^{(j-1)},\underline{W}_{i}^{(j)},\underline{W}_{i}^{(j-1)},\underline{V};\mu_{i}).$$

Giulia Sambataro PhD defense

Solution to the OS2 formulation

- Unconstrained fomulation for each time step;
- adaptation of the training phase, Gauss-Newton's procedure, hyper-reduction to
 - time-dependendency;
 - presence of internal variables.

Parameters distributions:

$$\begin{split} \left(E_{1}^{(k)}, \mu_{1}^{(k)}, C_{\text{al}}^{(k)}, \tau^{(k)}\right) &\overset{\text{iid}}{\sim} \mathcal{U}\big([928.14, 1.09 \cdot 10^{3}] \times [0.28, 0.32] \\ & \times [4.91, 5.76] \times [0.42, 0.49]\big), \\ Q_{\text{a}} &\overset{\text{iid}}{\sim} \text{Uniform}\big(\{2, \dots, 7\}\big). \end{split}$$

Giulia Sambataro PhD defense 43 / 50

Numerical setting

- $n_{\text{test}} = 5$,
- $I_s \subset \{1, \ldots, J_{\max}\}$ with $|I_s| = 20$,
- $\Delta t = 0.05$.

To assemble together the solutions, we use the partition of unity

operator
$$P_{\mathrm{pu}}[u] := \sum_{i=1}^{N_{\mathrm{dd}}} \phi_i \, u_i \in H^1(\Omega).$$

Out-of-sample prediction error:

$$E_J := \frac{1}{n_{\text{test}}} \sum_{\mu \in \Xi_{\text{test}}} \frac{\sqrt{\sum_{j=1}^{J_{\text{max}}} (t^{(j)} - t^{(j-1)}) \left\| P_{\text{pu}}[\underline{\underline{\mathcal{U}}}^{(j)}] - P_{\text{pu}}[\underline{\widehat{\underline{\mathcal{U}}}}^{(j)}] \right\|_{H^1(\Omega)}^2}}{\sqrt{\sum_{j=1}^{J_{\text{max}}} (t^{(j)} - t^{(j-1)}) \left\| P_{\text{pu}}[\underline{\underline{\mathcal{U}}}^{(j)}] \right\|_{H^1(\Omega)}^2}}$$

to compare with the best-fit error.

Giulia Sambataro PhD defense 44 / 50

OS2 without hyper-reduction

Figure 13: Two dimensional solutions in time for $\mu = \bar{\mu}$, found by global solve, by HF OS2 and by ROM hyper-reduced OS2 for m = 40, n = m.

Giulia Sambataro PhD defense 45 / 50

Hyper-reduced OS2

Figure 14: Performance of hyper-reduced OS2 with $tol_{eq} = 10^{-14}$.

Speedup factor: 13 - 22 for $n \in \{15, 20, 25, 30\}$ and m = n.

Giulia Sambataro PhD defense 46 / 50

- A monolithic model reduction method for the THM problem
 - Methodology
 - Numerical results
- 2 A one-shot overlapping Schwarz method for CB-pMOR
 - A one shot overlapping Schwarz formulation
 - CB-pMOR methodology
 - Numerical results
- 3 A one-shot overlapping Schwarz method for the THM system
 - Numerical results
- 4 Conclusions and perspectives

Giulia Sambataro PhD defense 47 / 50

Conclusions

We developed **CB-pMOR methods** in radioactive waste applications.

- Query costs reduction for nonlinear mechanics problems with internal variables;
- Variation in geometric parameters

- by a new one-shot overlapping Schwarz (OS2) method for steady elliptic PDEs;
- by the extension of OS2 to coupled problems with internal variables.

48 / 50

Giulia Sambataro PhD defense

Perspectives

- Extension to different dimensions of reduced bases in different archetype components;
- numerical investigation on scaling techniques in the OS2 objective function;
- localized training: extension of ¹⁵ to unsteady PDEs with internal variables;
- combination of our approach with **OS method** in ¹⁶ for time-dependent problems;
- combination of projection-based ROM and data-fitted methods in OS2 formulation.

Giulia Sambataro PhD defense

49 / 50

¹⁵Smetana, Taddei, arXiv preprint arXiv:2202.09872, 2022.

¹⁶Mota, Tezaur, Philpot, IJNME, 2022.

Thank you for your attention!

The THM model

Physical assumptions:

- fully-saturated-in-liquid porous medium,
- small displacements,
- no chemical reactions.

Coupling of three phenomena: **mechanics**, **hydraulics** and **heat transfer**.

State variables $\underline{\textit{U}} = [\underline{\textit{u}}^{\mathrm{T}}, \textit{p}_{\mathrm{w}}, \textit{T}]^{\mathrm{T}}$

	SI unit	description
<u>u</u>	m	solid displacement
$p_{ m w}$	Pa	water pressure
T	K	temperature

Table 1: state variables

Giulia Sambataro PhD defense 1/22

Fundamental definitions

Internal variables $\underline{W} = [\rho_{\mathrm{w}}, \varphi, h_{\mathrm{w}}, Q, \underline{M}_{\mathrm{w}}^{\mathrm{T}}, m_{\mathrm{w}}]^{\mathrm{T}}.$

	SI unit	label
$ ho_{ m w}$	${ m kg\cdot m^{-3}}$	water density
φ	%	Eulerian porosity
$h_{ m w}$	$\mathrm{J}\cdot\mathrm{Kg}^{-1}$	mass enthalpy of water
$\mathcal Q$	Pa	non-convected heat
$\underline{M}_{\mathrm{w}}$	$\mathrm{kg}\cdot\mathrm{m}^{-2}\cdot\mathrm{s}^{-1}$	mass flux
$m_{ m w}$	$\mathrm{kg}\cdot\mathrm{m}^{-3}$	mass input

Table 2: internal variables

Giulia Sambataro PhD defense 2 / 22

Geometry configurations

Figure 15: geometric configuration: (a) the non-dimensional domain, (b): the mesh \mathcal{T}_1 .

Giulia Sambataro PhD defense 3 / 22

Mechanics

$$\begin{cases} -\nabla \cdot \underline{\underline{\sigma}} = \rho \underline{F}_{\mathrm{m}} & \operatorname{in} \Omega, \\ \underline{\underline{\sigma}} \, \underline{\underline{n}} = \underline{\underline{g}}_{\mathrm{m},\mathrm{N}} & \operatorname{on} \Gamma_{\mathrm{N}} = \underline{\underline{e}}_{2}, \\ \underline{\underline{u}} \cdot \underline{\underline{n}} = 0 & \operatorname{on} \partial \Omega \setminus \Gamma_{\mathrm{N}}, \\ (\underline{\underline{\sigma}} \, \underline{\underline{n}}) \cdot \underline{\underline{t}} = 0 & \operatorname{on} \partial \Omega \setminus \Gamma_{\mathrm{N}}, \end{cases}$$

where the Cauchy stress tensor is

$$\underline{\underline{\underline{\sigma}}} = 2\mu'\underline{\underline{\epsilon}} + \lambda tr(\underline{\underline{\epsilon}})\mathbb{1} - (2\mu + 3\lambda)\alpha_s \Delta T\mathbb{1}$$
$$= 2\mu'\nabla_s\underline{\underline{u}} + (\lambda \nabla \cdot \underline{\underline{u}} - (2\mu + 3\lambda)\alpha_s \Delta T)\mathbb{1},$$

the volumetric deformation is $\underline{\underline{\epsilon}} = \nabla_{\mathbf{s}}\underline{\underline{u}} = \frac{1}{2} \left(\nabla \underline{\underline{u}} + \nabla \underline{\underline{u}}^T \right)$ and $\underline{\underline{F}}_{\mathbf{m}} = -\frac{\underline{\underline{s}}}{\gamma}\underline{\underline{e}}_2$.

Giulia Sambataro PhD defense

4 / 22

Hydraulics

$$\begin{cases} \partial_t m_{\rm w} + \nabla \cdot \underline{M}_{\rm w} = 0 & \text{in } \Omega \\ \\ \underline{M}_{\rm w} \cdot \underline{n} = 0 & \text{on } \partial \Omega \end{cases}$$

coupled to mechanical problem by the Darcy constitutive law

$$m_{\mathbf{w}} = \rho_{\mathbf{w}}(1 + \epsilon_{\mathbf{V}}) \varphi - \rho_{\mathbf{w}}^{\mathbf{0}} \varphi^{\mathbf{0}},$$

with

$$\begin{split} \underline{\underline{M}}_{\mathrm{w}} &= -\gamma \left(\nabla p_{\mathrm{w}} - \rho_{\mathrm{w}} \underline{\underline{F}}_{\mathrm{m}} \right), \\ \gamma &= \rho_{\mathrm{w}} \frac{\kappa_{\mathrm{w}} \, \sigma_{0} \, \overline{t}}{\rho_{0} \mu_{\mathrm{w},0} \, \overline{H}^{2}} \exp \left(-\frac{1808.5}{T_{\mathrm{ref}} + \overline{\Delta T} \, T} \right). \end{split}$$

Giulia Sambataro PhD defense 5 / 22

Heat transfer

$$\begin{cases} h_{\rm w} \partial_t \, m_{\rm w} \, + \, \partial_t \, \mathcal{Q} \, + \, \nabla \cdot \left(h_{\rm w} \underline{M}_{\rm w} \, + \, \underline{q} \right) - \underline{M}_{\rm w} \cdot \underline{F}_{\rm m} \, = \, \Theta & \text{in} \, \Omega \\ \left(h_{\rm w} \underline{M}_{\rm w} \, + \, \underline{q} \right) \cdot \underline{n} = g_{\rm t,N} & \text{on} \, \partial \Omega \end{cases}$$

where the thermal flux and is given by the Fick law

$$q = -\Lambda \nabla T$$
,

$$g_{t,N} = rac{P_{
m t} n_{
m c} ar{t}}{I_{
m O} ar{H}^2 \sigma_0} \expig(-t/ auig) \mathbb{1}_{\Gamma_{
m r}} = C_{
m al} \expig(-t/ auig) \mathbb{1}_{\Gamma_{
m r}}.$$

Giulia Sambataro PhD defense 6 / 22

Constitutive laws

$$\begin{cases} \frac{d\rho_{\rm w}}{\rho_{\rm w}} = \frac{dp_{\rm w}}{K_{\rm w}} - 3\alpha_{\rm w}dT, \\ \frac{d\varphi}{b - \varphi} = d\epsilon_{\rm V} - 3\alpha_{\rm s}dT + \frac{dp_{\rm w}}{K_{\rm s}}, \\ dh_{\rm w} = C_{\rm w}^{\rm p} dT + (\beta_h^{\rm p} - 3\alpha_{\rm w}T)\frac{dp_{\rm w}}{\rho_{\rm w}}, \\ \delta \mathcal{Q} = (\beta_{\mathcal{Q}}^{\epsilon} + 3\alpha_{\rm s}K_0 T) d\epsilon_{\rm V} - (\beta_{\mathcal{Q}}^{\rm p} + 3\alpha_{\rm w,m}T) dp_{\rm w} + C_{\epsilon}^0 dT, \\ m_{\rm w} = \rho_{\rm w}(1 + \epsilon_{\rm V}) \varphi - \rho_{\rm w}^0 \varphi^0. \end{cases}$$

Giulia Sambataro PhD defense 7 / 22

Initial conditions

- Deactivated repository assumptions: $T_0 = T_{\rm ref}$, $g_{\rm t,N} = 0$
- Simplified hydraulic equilibrium equation

$$p_{\mathrm{w},0}(x,y) = p_{\mathrm{w,top}} + \rho_{\mathrm{w},0}g(1-y)$$

Simplified equilibrium equation of mechanical forces:

$$\begin{split} \int_{\Omega_i} 2\mu' \nabla_{\mathbf{s}} \, \underline{u}_0 : \, \nabla_{\mathbf{s}} \, \underline{v} \, + \, \lambda (\nabla \cdot \underline{u}_0) (\nabla \cdot \underline{v}) - b p_{\mathbf{w},0} \, \nabla \cdot \underline{v} \\ - \, \rho^0 \underline{F}_{\mathbf{m}} \cdot \underline{v} \, dx &= \int_{\Gamma_{\mathbf{N_i}}} \, \underline{g}_{\mathbf{m},\mathbf{N}} \cdot \underline{v} \, dx \end{split}$$

for all $v \in \mathcal{X}_u$ such that $(\underline{v} \cdot \underline{n})|_{\partial \Omega_i \setminus \Gamma_N} = 0$.

• $\rho_{w,0} = 10^3 \, [\mathrm{Kg \cdot m^{-3}}]$, $\rho^0 = [2450, 2450, 2500] \, [\mathrm{Kg \cdot m^{-3}}]$

Giulia Sambataro PhD defense

8 / 22

POD-Greedy

Algorithm 3 POD-Greedy

```
Require: \Xi_{\text{train}} = \{\mu^{(k)}\}_{k=1}^{n_{\text{train}}}, tol_{\text{loop}}, tol_{\text{pod}}, N_{\text{count,max}}.
 1: \mathcal{Z} = \emptyset. \lambda = \emptyset. \mu^* = \mu^{(1)}.
 2: for n_{\text{count}} = 1, \dots, N_{\text{count max}} do
            Compute hf snapshots \mathbb{U}_{\mu^{\star}}
 3:
             [\mathbf{Z}, \lambda] = \text{data-compression}(Z, \lambda, \{\mathbb{U}_{u^*}\}, (\cdot, \cdot), tol_{\text{pod}});
 4:
            Construct the ROM with error indicator.
 5:
 6:
            for j = 1 : n_{\text{train}} do
                  Solve the ROM for \mu = \mu^{(k)} and compute \Delta_{\mu}.
 7:
 8:
            end for
 9:
       \mu^{\star} = \operatorname{arg\,max}_{\mu \in \Xi_{\operatorname{train}}} \Delta_{\mu}

    □ Greedy search

10:
       if \Delta_{\mu^{\star}} < tol_{\text{loop}} then,

    ▶ Termination condition

11:
                   break.
12:
             end if.
13 end for
```

Giulia Sambataro PhD defense

9 / 22

return Z and $\mu \in \mathcal{P} \mapsto \{\widehat{\alpha_{\mu}}^{(j)}\}_{i=1}^{J_{\max}}$.

Solution to the OS2 minimization problem

$$f(\beta) = \frac{1}{2} \|\mathbf{r}(\beta)\|_{2}^{2}$$
, where $\mathbf{r}(\beta) = \mathbf{P} \widehat{F}(\beta) + \mathbf{Q}\beta$. (1)

for suitable matrices P and Q.

$$\nabla r = \mathbf{P}\widehat{\mathbf{J}}_{F} + \mathbf{Q}, \quad \nabla f = \left(\mathbf{P}\widehat{\mathbf{J}}_{F} + \mathbf{Q}\right)^{T} r.$$
 (2)

where

$$\begin{split} \widehat{\mathbf{J}}_{\mathrm{F}}(\boldsymbol{\beta}) &= \mathrm{diag}\left[\widehat{\mathbf{J}}_{\mathrm{F}_{1}}(\boldsymbol{\beta}_{1}), \ldots, \widehat{\mathbf{J}}_{\mathrm{F}_{N_{\mathrm{dd}}}}(\boldsymbol{\beta}_{N_{\mathrm{dd}}})\right], \\ \widehat{\mathbf{J}}_{\mathrm{F}_{i}}(\boldsymbol{\beta}_{i}) &:= -\left.\left(\partial_{\boldsymbol{\alpha}_{i}}\widehat{\mathbf{R}}_{i}\right)^{-1}\partial_{\boldsymbol{\beta}_{i}}\widehat{\mathbf{R}}_{i}\right|_{(\boldsymbol{\alpha}_{i}:\boldsymbol{\beta}_{i}) = (\widehat{\mathrm{F}}_{i}(\boldsymbol{\beta}_{i}),\boldsymbol{\beta}_{i})}. \end{split}$$

Giulia Sambataro PhD defense 10 / 22

Solution to the OS2 minimization problem

Steepest-descent or Quasi-Newton

- explicit calculation of f, ∇f
- ullet no need of explicitly assembling $\widehat{f J}_{F}$

Gauss-Newton

- method of choice
- need of assembling $\hat{\mathbf{J}}_{F}$ at each iteration

$$\widehat{\boldsymbol{\beta}}^{(k+1)} = \widehat{\boldsymbol{\beta}}^{(k)} \, - \, \left(\nabla \mathbf{r} \left(\widehat{\boldsymbol{\beta}}^{(k)} \right) \right)^{\dagger} \mathbf{r} \left(\widehat{\boldsymbol{\beta}}^{(k)} \right)$$

Giulia Sambataro PhD defense 11 / 22

Hyper-reduction of local problems

Weighted variational form

$$\mathcal{G}_{\ell}^{\mathrm{eq}}(u,v) = \sum_{k=1}^{N_{\ell}^{\mathrm{e}}} \rho_{\ell,k}^{\mathrm{eq}} \left(\int_{\mathrm{D}_{\ell,k}} \eta_{\ell}^{\mathrm{e}}(u,v) \, dx + \int_{\partial \mathrm{D}_{\ell,k}} \eta_{\ell}^{\mathrm{f}}(u,v) \, dx \right)$$

where $\boldsymbol{\rho}_{\ell}^{\mathrm{eq}} = [\rho_{\ell,1}^{\mathrm{eq}}, \dots, \rho_{\ell,N_{\ell}^{\mathrm{e}}}^{\mathrm{eq}}]^{T}$ sparse vector of non-negative weights.

EQ procedure

For any $\ell \in \mathcal{L}$, find a vector $\boldsymbol{\rho}_{\ell}^{\mathrm{eq}} \in \mathbb{R}^{N_{\ell}^{\mathrm{e}}}$ such that

- $oldsymbol{
 ho}_\ell^{
 m eq}$ is as sparse as possible
- $| \sum_{k=1}^{N_{\ell}^{e}} \rho_{\ell,k}^{eq} | D_{\ell,k} | | \Omega_{\ell}^{a} | | \ll 1;$
- $$\begin{split} \textbf{3} \ \, \left| \textbf{J}^{\mathrm{b}}_{\ell} \left(\boldsymbol{\gamma}_{\ell} \right)^{-1} \left(\widehat{\textbf{R}}^{\mathrm{hf}}_{\ell} (\boldsymbol{\gamma}_{\ell}) \, \, \widehat{\textbf{R}}^{\mathrm{eq}}_{\ell} (\boldsymbol{\gamma}_{\ell}) \right) \, \right| \ll 1 \text{ where } \textbf{J}^{\mathrm{b}}_{\ell} := \partial_{\boldsymbol{\alpha}} \widehat{\textbf{R}}^{\mathrm{hf}}_{\ell}, \\ \forall \, \boldsymbol{\gamma}_{\ell} = \left(\boldsymbol{\alpha}_{\ell}, \boldsymbol{\beta}_{\ell}, \mu_{\ell} \right) \in \boldsymbol{\Sigma}^{\mathrm{train, eq}}_{\ell}. \end{split}$$

Giulia Sambataro PhD defense 12 / 22

Hyper-reduction of local problems

Sparse representation problem

$$\min_{\boldsymbol{\rho} \in \mathbb{R}^{N_{\ell}^{e}}} \|\boldsymbol{\rho}\|_{\ell^{0}}, \quad \text{s. t. } \|\mathbf{C}_{\ell} \left(\boldsymbol{\rho}_{\ell}^{\text{hf}} - \boldsymbol{\rho}_{\ell}^{\text{eq}}\right)\|_{2} \leq \textit{tol}_{\text{eq}}, \tag{3}$$

- Problem (3) is NP hard.
- Approximation: non-negative least-square problem

Giulia Sambataro PhD defense 13 / 22

Hyper-reduction of the objective function

The objective function can be written as

$$\frac{1}{2} \sum_{i=1}^{N_{\text{dd}}} \sum_{j \in \text{Neigh}_{i}} \int_{\Gamma_{i,j}} \|\widehat{u}_{i}(\boldsymbol{\alpha}_{i}, \boldsymbol{\beta}_{i}) - \widehat{u}_{j}(\boldsymbol{\alpha}_{j}, \boldsymbol{\beta}_{j})\|_{2}^{2} dx \approx \frac{1}{2} \sum_{i=1}^{N_{\text{dd}}} \boldsymbol{\rho}_{\text{L}_{i}}^{\text{p}} \cdot \boldsymbol{\eta}_{i}^{\text{p}}(\boldsymbol{\alpha}, \boldsymbol{\beta})$$

$$\tag{4}$$

We replace integral form in (4) with the discrete sum

$$\frac{1}{2} \sum_{i=1}^{N_{\text{dd}}} \sum_{j \in \text{Neigh}_{i}} \int_{\Gamma_{i,j}} \|\widehat{u}_{i}(\boldsymbol{\alpha}_{i}, \boldsymbol{\beta}_{i}) - \widehat{u}_{j}(\boldsymbol{\alpha}_{j}, \boldsymbol{\beta}_{j})\|_{2}^{2} dx \approx \frac{1}{2} \sum_{q \in \mathcal{I}_{\ell}^{\text{p,eq}}} (\boldsymbol{\eta}_{i}^{\text{p}}(\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\mu})) \|_{2}^{2} dx$$
(5)

EIM

Objective: find the quadrature indices $I_{\ell}^{p,eq} \subset \{1,\ldots,N_{\ell}^{p}\}$

Giulia Sambataro PhD defense

Hyper-reduction of the objective function

Algorithm 4 Empirical Interpolation Method for vector-valued fields

$$\begin{array}{l} \text{Input: } \{\psi_{\ell,i}^{\mathrm{a,p}}\}_{i=1}^{m}, \ \ell \in \mathcal{L} \\ \text{Output: } \mathrm{I}_{\ell}^{\mathrm{p,eq}} = \{\mathrm{i}_{\ell,1}^{\star}, \dots, \mathrm{i}_{\ell,m}^{\star}\} \\ \text{Set } \mathrm{i}_{\ell,1}^{\star} := \arg\max_{j \in \{1,\dots,N_{\ell}^{\mathrm{p}}\}} \|\psi_{\ell,1}^{\mathrm{a,p}}(x_{\ell,j}^{\mathrm{p}})\|_{2}, \quad \text{and define } \mathcal{I}_{\ell,1} \ := \\ \mathcal{I}\left(\cdot; \{\mathrm{i}_{\ell,1}^{\star}\}, \mathrm{span}\{\psi_{\ell,1}^{\mathrm{a,p}}\}\right) \\ \text{for } m' = 2, \dots, m \ \mathbf{do} \\ \text{Compute } r_{m'} = \psi_{\ell,m'}^{\mathrm{a,p}} - \mathcal{I}_{\ell,m'-1}\left(\psi_{\ell,m'}^{\mathrm{a,p}}\right) \\ \text{Set } \mathrm{i}_{\ell,m'}^{\star} := \arg\max_{j \in \{1,\dots,N_{\ell}^{\mathrm{p}}\}} \|r_{m'}(x_{\ell,j}^{\mathrm{p}})\|_{2} \\ \text{Update } \mathcal{I}_{\ell,m'} := \mathcal{I}\left(\cdot; \{\mathrm{i}_{\ell,j}^{\star}\}_{j=1}^{m'}, \mathrm{span}\{\psi_{\ell,j}^{\mathrm{a,p}}\}_{j=1}^{m'}\right). \\ \mathbf{end for} \end{array}$$

Giulia Sambataro PhD defense 15 / 22

Further tests

OS2-ROM without hyper-reduction for the THM system

Figure 16: $E^{(j)}\}_j$ with respect to time steps $j=1,\ldots,J_{\max}=\frac{T_{\mathrm{f}}}{\Delta t}$. Bubble and port modes are m=n=15.

Giulia Sambataro PhD defense 16 / 22

OS2-ROM without hyper-reduction for the THM system

Figure 17: $E^{(j)}$ }_j with respect to time steps $j=1,\ldots,J_{\max}=\frac{T_{\rm f}}{\Delta t}$. Bubble and port modes are m=n=30.

Giulia Sambataro PhD defense 17 / 22

OS2-ROM without hyper-reduction for the THM system

Figure 18: Efficiency ratio $\eta = \sqrt{\frac{\sum_{j} \|U^{(j)} - \widehat{U}^{(j)}\|^{2} \Delta t}{\sum_{j} \inf_{\zeta \in \mathcal{Z}} \|U^{(j)} - \zeta\|^{2} \Delta t}}$ for each subsolution $u_{\mathsf{X}}, u_{\mathsf{Y}}, p_{\mathsf{W}}, T$ in a in-sample configuration.

Giulia Sambataro PhD defense 18 / 22

Study the performance of OS and OS2 with respect to overlapping size δ .

Figure 19: Example of geometric overlapping instantiated configuration for $Q_a = 3$.

Giulia Sambataro PhD defense 19 / 22

 ${
m OS2} ext{-ROM}$ without hyper-reduction for the neo-Hookean model problem

Figure 20: Out-of-sample test: OS2 and OS average values of the objective function for $\delta = \frac{2}{3}I_Q$, $\delta = \frac{1}{3}I_Q$, $\delta = \frac{1}{6}I_Q$.

Giulia Sambataro PhD defense

20 / 22

 $\operatorname{OS2-ROM}$ without hyper-reduction for the neo-Hookean model problem

Figure 21: Out of sample test: OS2 and OS maximum numbers of iterations for $\delta = \frac{2}{3}I_{\rm Q}$, $\delta = \frac{1}{3}I_{\rm Q}$, $\delta = \frac{1}{6}I_{\rm Q}$.

Giulia Sambataro PhD defense 21 / 22

 $\operatorname{OS2-ROM}$ without hyper-reduction for the neo-Hookean model problem

Figure 22: Out of sample test: average computational cost for $\delta = \frac{2}{3}I_{\rm O}$, $\delta = \frac{1}{3}I_{\rm O}$, $\delta = \frac{1}{6}I_{\rm O}$.

Giulia Sambataro PhD defense 22 / 22