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Motivations

Management of radioactive waste materials.
Solution by Andra:

@ deep-depth repository (300 — 500 m) in
geological media

@ long term isolation

Figure 1: Packages of radioactive waste in repository structures

(alveoli)

'French National Agency for radioactive waste management.
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The THM model

T[K] at time index 1

@ High temperature o
radioactive waste

@ Hydro-mechanical response

0 02 04 06 08 1

of the geological medium ..-.. B..

The problem is described by Thermo-Hydro-Mechanical
(THM) systems of PDEs:

@ mechanics: linear elasticity
@ hydraulics: water mass conservation law, Darcy's law

@ heat transfer: energy conservation, heat conduction
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The THM model

e State variables U = [u”, p,,, T|";
e Internal variables W = [p, ¢, hy, Q, ML my]T.

—W

Given € P, find U, and W, such that
{ g/.l,(Qu? 8tgp,7wu) = 07 an X (07 Tf]?
W,=F.U,W,), inQx(0,T,
with U, (+,0) = Uy, W ,(-,0) = W,,.

Challenges of the numerical model: J

high nonlinearity, time dependency, high dimensionality
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The THM system

Parametrized system:
@ geometric configuration (e.g. the number of the alveoli);
@ material properties of the medium.

Q)

rr./l rr,Qa

Figure 2: Domain 2 and boundaries I';1,...,[ q,.

Challenges

@ uncertainty in the parameters: multi-query and almost
real-time context

@ geometric parameters cause topology changes
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Objective and contributions

Objective

develop a component-based (CB) model order reduction
(MOR) procedure for parametrized problems in nonlinear
mechanics, with emphasis on THM systems.

© Design of a monolithic MOR technique for THM systems 2

© Design of a CB-pMOR formulation for parametrized
nonlinear (steady) elliptic PDEs. 3

© Extension of the CB-pMOR formulation to THM systems.

2lollo, Sambataro, Taddei, IJNME, 2022.
3lollo, Sambataro, Taddei, CMAME, 2023.
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Outline of the presentation

@ A monolithic model reduction method for THM systems

© CB-pMOR methodology for steady problems: application to
a nonlinear elasticity problem

© CB-pMOR methodology for time-dependent problems with
internal variables: application to the THM problem.

© Conclusions and perspectives

R —



© A monolithic model reduction method for the THM
problem

Giulia Sambataro



Time-marching Galerkin ROM

The Reduced Basis method

Methodology: given a Hilbert
space (X, ||-]|) over Q C R? and the parametricset P C RY, P > 1,

for each € P and each time index j = 1,..., Jy.x wWe seek
0) &
0, =Zua? = 3 (o)), &,
n=1
where

e reduced coefficients a,({) : P — RV,

e reduced order basis (ROB) Z,, : RN — Zy s.t.
Zy = span{¢ }N.; C &AM

Giulia Sambataro PhD defense 8/50



Time-marching Galerkin ROM

The Reduced Basis method

Rationale: we approximate the solution manifold
M={UDex: pePje{l, .. Juux}}t C XM,

by a low-dimensional linear space Zy, with N < N,

Linear compressibility is guaranteed by exponential decay of the
Kolmogorov n-width for a wide range of elliptic and parabolic
problems.

Giulia Sambataro PhD defense 8/50



Offline/online decomposition

Algorithm 1 Offline/online decomposition

Offline stage:
1: Define a properly selected training set =(..i, and compute
{gg)}jels, Is C {]-7 ey Jmax} ‘v’,u S Etrain
2: construct the ROB Zy : RN — Zy > data compression
3: construct the ROM with hyper-reduction structures.
> hyper-reduction

Online stage:
4: Given u € =, compute {&Lk)}f__“i‘x by solving the ROM

ROM=reduced order model

R —



Construction of the reduced space
Two challenges:
@ sampling of P,
© compression strategy.

For time-dependent problems: POD-Greedy method:*

@ Greedy search driven by an error indicator

@ POD-based data compression: find small orthonormal
basis that is optimal in the L?(=;,.in) sense:

Ntrain

Z U — NzU, |

Z,=arg inf
ZCX,dimZ=n N qin

where Mz, (U}/)) = arg min | U)) - V|
Vezn

#Haasdonk, Ohlberger, M2AN, 2008; Haasdonk, ESAIM, 2013.
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POD-Greedy algorithm

ﬂ* € Etrain
4
) I
Compute hf snapshots U,» = { U, }

I

[Z,A] = data-compression(Z, A, {U.+}, (-, ), tohyod)

1

1
| 1

1
: All < tO/loop 1 J’

1 . . .
Le-mo----- Construct the ROM with error indicator

2

Solve the ROM and compute A, Vi € Ziain
4

p*=arg max A,

MEZtrain

Figure 3: Adaptive algorithm based on POD-Greedy procedure
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Data compression

Motivation: constrained memory capacities of standard POD:

[Z, A] < POD ({Ux}ram, (-, ), tohoa) -
Given Z and the snapshots U+,
e hierarchical POD (HPOD)®

Z/ g [Z, Znew], ZneW < POD({nZorthUu*}k, (', '), to,pod);
e hierarchical approximate POD (HAPOD)®

[z, ’](—POD({ } {\//\—NCN} oG to/pod)

5Haasdonk, SIAM 2017.
5Himpe, Leibner, Rave, SIAM, 2018.
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Reduced formulation

e Galerkin projection

hf (0 j—1 ' j—1 _
{ Git (09, Uy, W9, WY, V) =0, ¥V € 2y
' ) 1y0-1 i—1
wi = Fiu, uf ™, wi ™)

System of N equations to be solved, for N < N,

@ Alternative reduced formulation: minimum residual
formulation. *

"Farhat et al, JCP, 2013.
PhD defense 13 /50



Galerkin ROM

Computational bottleneck: integration over the full mesh;
proposed solution: integration on a reduced mesh.

High-fidelity residual:

Ne
Ry (U V) = > e (BRU EUD, (W) (WY LBV
k=1

Empirical quadrature residual: 1

e 8 2: eq hf :
Ruq (U,uav) pk r, '7'1'7'7') 06 ;

keICq 04

where p®d = [p%, .. ,pNe]T st pt=0if
k ¢ Icq. Peq >0.

Question: choice of p°d.

e L
02 04 06 08 1
1
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Hyper-reduction
EQ procedure
Find p®4 € R s.t.
Q ||p|o is as small as possible;
© the entries of p°@ are non-negative;

@ constant-function constraint: 8

Ne

S oo —19l| < 1
© manifold accuracy constraint:

-1 /. A
102 (02) (R o) -2 o)) <

8Farhat et al, IJNME, 2015; Yano, Patera, CMAME, 2019; Ryckelynck,
IJNME, 2009.
S ————eT
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Hyper-reduction

Sparse representation problem (NP-hard)®

p>0

find p € arg mi t.
ndp € arg i flelos {IICp—bI!*gé,

for a suitable choices of the matrix C, the vector b, the norm
|| - ||+, and the tolerance 4.

Inexact non-negative least squares (NNLS) problem

min ||[Cp — b||2s.t.p > 0.
pERNe

9Lawson CL, Hanson RJ, SIAM 1974: Farhat et al, IJNME, 2015.
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Error indicator

Goal: find an inexpensive and accurate indicator of the true error

Jmax
J S (t0) — 16-0) U - 09|
E

j=1

w e .
J Z (t0) — ¢G-D) Hgfj)H

J=1
First proposal: time-discrete L2(0, T¢; ') residual indicator 10

J - 5
max ) ) Rhf U(_])’ V
Agf(U) - \l Z (t('l) - t(Jfl)) ( sup uﬁ\/H)> ‘
Vily

j=1 vey\{0}

0Haasdonk, Ohlberger, M2AN, 2008.
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Error indicator

Our proposal: time-average hyper-reduced error indicator

Royy (U/-“ W, M)

Ay, (UuaWu) = sup El )
Veyu\{0} (4|
where
Jmax i i : i . i
R, (U, Wy, V) =Y (0 —eU-Dyrea (), =1, wh wi=, v)
j=1

1Fick et al, JCP, 2018.



Numerical setting
The THM problem

@ Newton’s method with line-search;

o Implicit Euler time discretization, with J,,..x = 100 uniform
time steps;

@ p = 3 FE discretization for the displacement, p = 2 for
pressure and temperature.

Parametrization: Young's modulus E, Poisson’s ratio v in the
region UA, thermic factor 7 and the constant C,.

(Ev, 1,7, Ca) ™ U([857.52,1.16 - 10%] x [0.25,0.35]
x[4.53,6.13] x [0.39,0.52])

ENSE————T



Error estimation

10}
1072 L
1073k

Wl
1075 =
100 &

o

(a) H-POD

10°

1071
1072
wjio-s
1074
10°°

107°

10°°

105 10*  10% 102

A,

(c) HA-POD

Figure 4: correlation between the time-discrete L2(0, T¢; )’) with
respect to the true relative error E,. (a):L%(0, T¢; V') , (b),(c):A,.

Giulia Sambataro
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Prediction tests

10! 10t}
3
W lO’Z 102
X £
a7
EV
To-3 1073
- POD-Greedy - POD-Greedy
10-4 -A-strong POD-Greedy 10-4 -A-strong POD-Greedy

10 15 20 25 30 35 40 45

N
(a) H-POD Greedy

15 20 25 30 35

N

(b) HA-POD Greedy

Figure 5: parametric problem:out-of-sample performance of the ROM
parametric problem obtained using the POD-Greedy algorithm.
Comparison with strong POD Greedy.
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@ A one-shot overlapping Schwarz method for
CB-pMOR

Giulia Sambataro



Foundations of the method

We consider a steady problem of the type

findu, € X : G,(u,,v) =0 Vv e,

with (or without) Dirichlet boundary conditions on a portion of the
domain g, C 0Q. If X = H!, the test space ) is set equal to

1
Hrdino'

(2

[

B

{2,

()

e ——T



Foundations of the method

Let us consider the Overlapping Schwarz method

find ugk) €A Ql(u§k), v) =0 Vv e X, ng)|r1 = ugkfl);

(k)

u

find uék) SIP O Qg(ugk), v) =0 Vv e Xy, uék)|r2 = { tk—l)
up

where Xi,O = {V S X,' . V|rl. = 0}

Convergence of the OS iterations to a limit state (uf, u3) implies
that ||UI — U;HLZ(rIUQ) = O

Proposal: one-shot overlapping Schwarz (OS2) method
MOR constrained optimization formulation J

ENS T ———



CB full-order model

Given = (11, 112) € P = @>_, P, find
u™ = (uy, ) € X = ®7_, Xi to minimize

OS2 constrained optimization

statement
1 2 2 i .
g;l)rgi <HU1 — U2HL2(F1) + w2 = u1]|,_2(|-2)> ré rl |
s.t. k

Gi(u1,v1) =0 Vv € Xy,
Ga(ta,va) =0 Yvo € Xap

ES T ———eT



Solution decomposition

For i = 1,2, given instantiated spaces X; C [H] r4:]",

7r:'iir
e Port space U; = {v|r, : v € X;} C [HY3(T)]P
@ Bubble space X,y = {v € &} : v|r, =0}

(a) port and bubble spaces  (b) port and bubble spaces for
fori=1 i=2

Figure 6: Sketch of bubble and port nodes associated with (a):&7 g,
F1 and (b):XQ’O, F2.

ES——T



Solution decomposition

~

u; = F,'(W)

bubble

|

Given w € U; and continuous extension operator E; : U; — A,

+[E)

port

where E; : U; — X is the continuous extension operator:
(Eiw,v) =0Vv € Xip, Ew|r, = w;

Fi : U; — X, is the port-to-bubble maps.

The variational forms G; : X; x X;¢ — R satisfy *?

g,' (F,(W) +E,‘W, V) =0 Vve )(,‘70.

12Huynh et al, ESAIM, 2013.

Giulia Sambataro PhD defense
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CB full-order model

Find u"P = (u?f’p hf’p> €U = ®>_, U; to minimize

Unconstrained optimization statement

1
min = (1IEx} + Fu(u}) — Eot} — Fa(u) [z +

uP

|Eot? + Fo(ud) — Equl — Fl(uf)||§2(r2))

@ Introduction of port-to-bubble map = unconstrained
optimization problem

@ Nonlinear least-squares problem
@ Methods: Gauss-Newton (or Quasi-Newton)

e —ET



Archetype components

For a reference value of geometric parameter Q, we define

archetype components:

d —|_ 5 a
,"""’1 [a ext
rlnt ] ra h — 2d (?q: _________
a,dir h:;Xt =h— 5:
I_lntQ ) . .
int dext — Qref d J

Figure 7: Archetype library L.

Giulia Sambataro
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Instantiated components

For any value of interest of geometric parameter @, we construct
instantiated components:

I rQa

rNdd

I
rrl era

Figure 8: Instatiated (overlapping) subdomains w;
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Offline/Online CB-pMOR procedure

Algorithm 2 Offline/online CB-pMOR procedure

Offline stage:

1: A library £ of archetype components is defined

2: for 1 € =irain C P do

3: Generate local ROBs and ROMs > localised training
4: endfor

Online stage: for any new p € =(os C P

. A partition {Q;}}4 is instantiated

: Compute the global solution u, > coupling of local ROMs

> O

ENS T —



MOR approximation for OS2

© Port reduction
Port spaces Z° c U;, WP ={E;(: (€ Z° CcU;} C A&,
Port ROB WP : R™ — WP

Giulia Sambataro



MOR approximation for OS2

© Port reduction
Port spaces Z° C U;, W’ ={Ei(: (€ Z° CU;} C A,
Port ROB WP : R™ — WP

© Reduction of local maps
Approximate port-to-bubble map F; : R” — R" is s.t.
Ri</F\i(Bi)7/6i> =0
where local residuals ﬁ,- :R” X R™ — R” are s.t.

(ﬁ,-(a,ﬁ)> = Gi(Gi(e, B),CY) i=1,2,j=1,....n

ENS T ——T



MOR approximation for OS2

© Port reduction
Port spaces Z° C U;, W’ ={Ei(: (€ Z° CU;} C A,
Port ROB WP : R™ — WP

© Reduction of local maps
Approximate port-to-bubble map F; : R” — R" is s.t.

§i<§i(ﬁi)7/6i> =0

where local residuals R; : R” x R™ — R” are s.t.

(ﬁ,-(a,ﬁ)> = Gi(Gi(e, B),CY) i=1,2,j=1,....n

{ e, B7) = Zhay + WPB,, i=1,2

ENS T ——ET



ROM OS2 formulation

Find 8 = [B,, B,] € RM=2" such that

ROM OS2 unconstrained statement

B € arg m|n % (”Z Fl(ﬁl) W1p:31 - Zzb/F\z(:Bz) - V|/2p:32||%2(r1,2)7L

||Z2b/F\2(,62) + W2p/62 - Z{Jfl(/Bl) - W]?ﬂ1||%2(r271)>

I

%,

13

13To simplify notation, ny = np =n, m=my=m .

Giulia Sambataro
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Hyper-reduced formulation

Objectives:
@ speed up assembling of local ROMs
© speed up evaluation of the objective function
Methods:
© element-wise empirical quadrature (EQ) procedure
© EQ,variant of empirical interpolation method (EIM) (14)

] b
¢ H

1}
|
015 i 0.15 f +
\
¥
\

Ly 0.05 ¢
005 R“ 4 1 i ]

HATIN

SRR o & 1
01 005 0 005 01 015 01 -005 0 005 01 015
o 7

Figure 9: Sampled elements and port quadrature points in a
component.

MBarrault et al.,C.R.M., 2004
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Case study: nonlinear (neo-Hookean)
elasticity

-V -P(F(u))=0 in Q

u-n=20 on Iy

P(F(u))n =g =1[0, —s]” on I,

P(u)n = giop = [0, 4(x — 1/2)(x +1/2)]" on Miep

u=20 on rbtm
y I_top

P(u) =X (F(u)— F(u)"")+ | ]
A1 log (det(F(u))) F(u)™T

i E— Mo




Case study

Parameters distributions

(1, B, Es, ) * Uniform ([25,30] x [10,20]? x [0.4,1])
Q. % Uniform ({2,...,7})

0 yT rtop Training global parameters
NddE EI Q Etmin - {/Jl(k)}zt:ralmv Nirain = 70

Out-of-sample global parame-
ters Etest - {ﬁ('l)}f:]s_t v Miest =
20

e ————T



Numerical setting

@ Out-of-sample average prediction error

o1 IPou[u'] = PoulT] | ()
- nteSt )u‘eztest pru[uﬂf] H HI(Q)
Naa

where P, [u] := Zqﬁ,- u; € H*(Q) is the partition of unity
i=1
operator.
@ P2 FE discretization with N¢

o = 1120 and NS
elements.

ext

= 3960

e ———



ROM OS2: hyper-reduction

1071

E s EQ + HFQ

B —B— EQ + EQ, toleq,p = 104

= —B— EQ + EQ, toleq,p = 1076
10—2 g —o— EQ + EIM |
80 I ]
z I ]
LLI - -
1073 ; é
1071 3

\ \ \ \ \ \ \ \
2 4 6 8 10 12 14 16
m

Figure 10: EIM and EQ. EQ tolerance tolq = 10710 for local
problems and toleq, = 1074, tolq, = 107° for o.f. (EQ+EQ).
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ROM 0OS2: speedup

30
L 20| |
7 K@_%E\E
o
b
o sk HFQ+HFQ
@ 101 —B— EQ+EQ, toleq,p = 107% | |
—B— EQ+EQ, toleq,p = 107°
—o— EQ+EIM
FYTEEy i VN PP PRI y T ry
oL | .
3 4 5 6 7 8
Ndd

Figure 11: speedup(Nyq) := %; we set m=n =16, EQ

tolerance toleq = 10710

Giulia Sambataro



Optimization strategy

— = Gauss-Newton

s 10-8 7& s+ Quasi-Newton w 102 F |
B Eo e oS ) B i
S .nol T = - = Gauss-Newton |
:10 g ® = ) 10tk —— Quasi-Newton ||
o) - : : B B
010710 g e s ?é k + 0S B
0 E : . 3 E -, L » -
Byp-11 | | i 1

10 E | I I = 100 | | | |

2 4 6 8 2 4 6 8

m m
(a) scheme convergence: objective (b) scheme convergence: iterations

function

Figure 12: comparison between OS2 with Gauss-Newton,
quasi-Newton, OS.
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© A one-shot overlapping Schwarz method for the
THM system

Giulia Sambataro



Formulation

Given 11 = (i1, 12) € P = @, P, find U = {U,,U,} € X,

with X = ®,?:1 X that solves for j = 1,... Jpax

Constrained optimization statement

Ur(?)ln = (HU(J) Qg)||i2(r1) + “ggj) - g(ij)‘|%2(rz))

S.t.
GIWP, v) =0 VYV, € Xy,
PP, V,) =0 YV, € Xag

Giulia Sambataro

PhD defense
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Formulation

Given 11 = (i1, 12) € P = @, P, find U = {U,,U,} € X,
with X = ®,?:1 X that solves for j = 1,.. ., Jpax

Constrained optimization statement

Jnin 3 = (109 = B9 2 108 = U0 )

s.t. F2 Fl
gI(UY, v,) =0 VYV, € Xy,
GIUY, V) =0 YV, € Xy

v

where internal variables only enter the constraints:
GOV, v) =GV, U9V WP Wi v; ).

S —yET



Solution to the OS2 formulation

@ Unconstrained fomulation for each time step;

@ adaptation of the training phase, Gauss-Newton's procedure,
hyper-reduction to

» time-dependendency;
» presence of internal variables.

Parameters distributions:

(El(k), P, Cg),ﬂk)) ™ 14([928.14,1.09 - 10%] x [0.28,0.32]

x [4.91,5.76] x [0.42,0.49]),
Q. % Uniform ({2,...,7}).

NS —ET



Numerical setting

@ Iliest = 5,
o I, C{l,..., Juax} with |I3| = 20,
e At =0.05.
To assemble together the solutions, we use the partition of unity

Naqg
operator P, [u] := Zd); u; € HY(Q).
i=1
Out-of-sample prediction error:

N e T i A
E, =
/ Ntest Z ~'/max t(J) o t(Jfl) P U(J) 2
HEZtest ZJ:l ( )H pu[i ]HHl(Q)

to compare with the best-fit error.

ENS T ——T



OS2 without hyper-reduction

T T w
—  TF - 304 | -
< = 302/
=) = Apw}j - -~ {7}
S = Elply | 300 e [ TO; ||
1 Pl | 298 [ Pl TOD ]
0 10 20 0 10 20
J J
(a) pressure evolution (b) temperature evolution

Figure 13: Two dimensional solutions in time for u = j1, found by
global solve, by HF OS2 and by ROM hyper-reduced OS2 for m = 40,

n=m.
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Hyper-reduced OS2

—o— OS2-EQ E;
C:> | —5— 0S2-HFQ E, - 10
O —o—  EYf —
é_ 10—2 G\S\M\e\@ § 8
5 10~ e
S 1n-
£ 106 g0
3 10 | | \ P 2 |
10 20 30 10 20 30
n n
(a) error (b) avg computational cost

Figure 14: Performance of hyper-reduced OS2 with tolq = 1014,

Speedup factor: 13 — 22 for n € {15,20,25,30} and m = n.

ENSEE—ET



@ Conclusions and perspectives
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Conclusions

We developed CB-pMOR methods in radioactive waste appli-
cations.

@ Query costs reduction for nonlinear mechanics problems
with internal variables;

© Variation in geometric parameters

1

0.8

~ 0.6
04

0.2

0 . 0 02 04 06 08 1
2

» by a new one-shot overlapping Schwarz (OS2) method for
steady elliptic PDEs;

» by the extension of OS2 to coupled problems with internal
variables.

NS —yET



Perspectives

@ Extension to different dimensions of reduced bases in
different archetype components;

@ numerical investigation on scaling techniques in the OS2
objective function;

o localized training: extension of ® to unsteady PDEs with
internal variables;

@ combination of our approach with OS method in © for
time-dependent problems;

@ combination of projection-based ROM and data-fitted
methods in OS2 formulation.

15Smetana, Taddei, arXiv preprint arXiv:2202.09872, 2022.
6Mota, Tezaur, Philpot, IJNME, 2022.
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Thank you for your attention!




The THM model

Physical assumptions:
o fully-saturated-in-liquid porous medium,
@ small displacements,
@ no chemical reactions.

Coupling of three phenomena: mechanics, hydraulics and heat
transfer.

State variables U = [QT, Py, T]T

Sl unit  description

u m solid displacement
pw Pa water pressure
T K temperature

Table 1: state variables

T —



Fundamental definitions

Internal variables W = [pw, ¢, hy, @, ML my]7T.
Sl unit label
pw kg -m™3 water density
e % Eulerian porosity
hy, J-Kg! mass enthalpy of water
Q Pa non-convected heat
M, kg -m 2-s7! mass flux
my, kg-m™3 mass input

Table 2: internal variables

T —r



Geometry configurations

BN

USC
uT

UA

geometric configuration: (a) the non-dimensional domain,

15

Figure

(b): the mesh T;.

Giulia Sambataro



Mechanics

(V.o = pF, inQ,
an=g, v only = ¢,
u-n= on 0\ Iy,
( (gn)-t=0  ondQ\Ty,

where the Cauchy stress tensor is

o =2p'e + Mr(e)1 — (2p + 3N AT1

=2u'Vsu+ (AV-u — (2u+3\)asAT) 1,

the volumetric deformation is ¢ = Viu = 3 (Vu+ Vu') and

—_&
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Hydraulics

oomy +V-M =0 inQ
M, -n=0 on 0f2

coupled to mechanical problem by the Darcy constitutive law
My = pw(l+ev) o — pd¢®,

with
Mw = =7 (va - pWEm)7

Fw 0o t ( 1808.5 )
=Py = CXP | ——————— .
Polw,0 H? Tref +ATT

Giulia Sambataro



Heat transfer

hy O My, +8tQ+V-(hWMW+g)—MW~£m =0 inQ
(th +Q)'Q=gt,N on 90

w

where the thermal flux and is given by the Fick law
qg=-AVT,

F)tnclT

— /QI:I—200eXp (—t/7)1r, = Caexp (— t/7)1r,.

8t.N

Giulia Sambataro



Constitutive laws

(dpw _ %_304 JdT
D KW w )

dpy,
= dey —3a,dT + ",
b — o d6V 3« + Ks

dp
dhy, = C2dT + (B2 — 3ay T)pi

Y
w

§Q = (85 +3a:Ko T) dey — (8% +3awmT) dpy + C2dT,
\ My = pw(l + EV) ¥ — pgvﬁpo-

Giulia Sambataro



Initial conditions

@ Deactivated repository assumptions: 7o = T,cf, gen =0
e Simplified hydraulic equilibrium equation

Pw.o(X,¥) = Pwitop + Pwog(1 — y)

@ Simplified equilibrium equation of mechanical forces:

/ 2u/Vsuy: Vv + MV - ug)(V-v)—bpyoV: v
Ql

PEavax= [ g, v
M

for all v € X, such that (v - n)|sa.\r, = 0.
@ puo =10 [Kg -m™3], p° = [2450, 2450, 2500] [Kg - m ]

T —



POD-Greedy

Algorithm 3 POD-Greedy

ReqUire: Etrain = {,U(k)},/:t:”iinv tO/loopv tO/podv Ncount,max-
1 Z2=0,A=0, p*=p).

2: fOI’ Ncount = 17 A Ncount,max dO

3: Compute hf snapshots U,

4: [Z, A] = data-compression(Z, A, {Uy}, (,-), tolyod);

5: Construct the ROM with error indicator.

6: for j =1: ngay, do

7 Solve the ROM for y1 = u%) and compute A,,.

8: end for

9: p* = argmax,e=, ... A, > Greedy search
10: if Ay~ < tohoop then, > Termination condition
11: break,

12: end if.

13: end for

return Z and j € P — {&Z(j)}fi’fx-

R E——



Solution to the OS2 minimization
problem

F(8) =3I (B) 3. where r(8) =PFB)+ Q8. (1)

for suitable matrices P and Q.
- N T
Vr=Pi+Q, Vf= (PJF+Q) r. 2)

where

~

J:(8) = diag [Ll(ﬂl), Ty (ﬁNdd)] ,
3B = — (aa,.ﬁ,-)_

1 ~
8,3,‘ R =
(ai,8) = (Fi(B:).8;)

S —



Solution to the OS2 minimization
problem

Steepest-descent or Quasi-Newton
@ explicit calculation of f, V f

@ no need of explicitly assembling j}:‘

Gauss-Newton
@ method of choice
@ need of assembling Jr at each iteration

B(m) _ B(k) B (Vr <,/8\(k)>)TI’ (B(k))

e ———



Hyper-reduction of local problems
Weighted variational form

Ng
Gl (u,v) =Y P (/ ns(u, v)dx + /
k=1

Dy k 9Dy k

nh(u, v) dx>

where p," = [p}], ... va?N;]T sparse vector of non-negative

weights.

EQ procedure
For any ¢ € L, find a vector p;* € RV such that

@ p," is as sparse as possible
© | i ok IDes] — 193] < 1
@ [I2 (7)™ (R¥(7,) — R*(v,)) | < 1 where Jp := 9 RY,
Vv, = (o, By, ) € Ty
PhD defense  12/22




Hyper-reduction of local problems

Sparse representation problem

min_[[plle, s.t. [[Cc(ps" = pi*) ll2 < toleq, (3)
pPER™E

@ Problem (3) is NP hard.
@ Approximation: non-negative least-square problem

ENS——y



Hyper-reduction of the objective

function
The objective function can be written as

Ndd Ndd
32 [ e s) e p)io ~ 33 el
i=1 jeNeigh;

(4)

We replace integral form in (4) with the discrete sum

Ndd
~ 1
32 [t m)-ae B~ 5 3 k(e o)
i=1 jENeigh; gerbed

(5)

EIM
Objective: find the quadrature indices 1) C {1,..., NI} J

S ———



Hyper-reduction of the objective

function
Algorithm 4 Empirical Interpolation Method for vector-valued

fields
Input: {¢; 7}, (€L
Output Ip o= {lg 17 iz,m}
||¢€1 (XEJ)HQ and define Z;;

Set i}, :=ar max
1 g e}

je{l,
T (5 {i7s) Span{¢2f})
form=2,...,mdo

Compute r,y = 1/)2’,}:,, — Ly -1 (1/)2’5,,)
Set i), :=arg ma (XD
i = arg_max ()l
Update Zy y := T (+; {i?l m o span{yy T,
end for

Giulia Sambataro PhD defense
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Further tests

0S2-ROM without hyper-reduction for the THM system

104 F 1073
107}

—~— E _

% 10-6 7 10~°
_7 ;

1077k 107

0 10 20
J J
(a) At =0.05 (b) At =0.02

Figure 16: EU)}; with respect to time steps j = 1,.. ., Jmax = AL

Bubble and port modes are m = n = 15.
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Further tests on OS2-ROM

0S2-ROM without hyper-reduction for the THM system

—6— Ux
—O— Uy
oo o) o
:5:
L1010 | | 10°°
107+ L \ | 10710
0 10 20
J J
(a) At =0.05 (b) At =0.02

Figure 17: E(f)}j with respect to time steps j = 1,..., Jmax = %.

Bubble and port modes are m = n = 30.
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Further tests on OS2-ROM

0S2-ROM without hyper-reduction for the THM system

10° 1 0w
—5— Pw
—eo— T
3 |
_ 10
10° | |
| | |

10 20 30

. . . NTOBIOIENN
Figure 18: Efficiency ratio n = \/Z-Zi:r:f”gez HUU)JCIIJAt
J

subsolution uy, uy, pw, T in a in-sample configuration.

for each
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Further tests on OS2-ROM

Study the performance of OS and OS2 with respect to overlapping
size 0.

o 0
©

©

| ey | Pk
I_r,l I_r,2 I-r,3

Figure 19: Example of geometric overlapping instantiated
configuration for Q, = 3.
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Further tests on OS2-ROM

0S2-ROM without hyper-reduction for the neo-Hookean model

problem

. _ 2
—5—052:6 = 2
. _ 1
—e—052:6=1Iq

5= 2
—B8— 05:6 = 2iq
—0— 05:6=1Ig

L5 =1
——082:6 = Lig

—— 05:6=1Ig

o0 |-

| | | J—
10 12 14 16

m

Figure 20: Out-of-sample test: OS2 and OS average values of the
objective function for § = %/Q, o= %/Q,é = %/Q.

Giulia Sambataro
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Further tests on OS2-ROM

0S2-ROM without hyper-reduction for the neo-Hookean model
problem

5= 2
—5—052:6 = 2Ig
L5 =1
—e—052:6=1Ig

100 - —8— 05:6=2Iq
—8— 05:6=1Ig
—&—0S2:6 = tlq

s =1
—e— 05:6=lig

50 | a

max nbr iters

07\ \ \ \

\ \ \ L]
2 4 6 810121416

Figure 21: Out of sample test: OS2 and OS maximum numbers of
iterations for § = 2lg, § = 3lg, 6 = tlo.
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Further tests on OS2-ROM

0S2-ROM without hyper-reduction for the neo-Hookean model
problem

i
—5—052:6 = 2Ig

. _ 1
—e—052:6=1Ig

8 [ | —— 05:6=2Ig
o +os:5:%1/Q
3 6 —A—052:6 = Lig
© —e— 0s:5=1lig
a
(S 4 |
o]
O
o0 = .
S 2
[

o 58 —o—B—0——28—0
0, |

| | | |
2 4 6 8 10121416

Figure 22: Out of sample test: average computational cost for
2 1 1
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