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Abstract

We propose a component-based (CB) parametric model order reduction (pMOR) formulation for parameterized nonlinear
lliptic partial differential equations (PDEs) based on overlapping subdomains. Our approach reads as a constrained optimization
tatement that penalizes the jump at the components’ interfaces subject to the approximate satisfaction of the PDE in each
ocal subdomain. Furthermore, the approach relies on the decomposition of the local states into a port component – associated
ith the solution on interior boundaries – and a bubble component that vanishes at ports: since the bubble components are
niquely determined by the solution value at the corresponding port, we can recast the constrained optimization statement
nto an unconstrained statement, which reads as a nonlinear least-squares problem and can be solved using the Gauss–Newton

ethod. We present thorough numerical investigations for a two-dimensional neo-Hookean nonlinear mechanics problem to
alidate our method; we further discuss the well-posedness of the mathematical formulation and the a priori error analysis for

linear coercive problems.
© 2022 Elsevier B.V. All rights reserved.

MSC: 65N30; 41A45; 35J15

Keywords: Parameterized partial differential equations; Model order reduction; Overlapping domain decomposition; Alternating Schwarz method

1. Introduction

1.1. Component-based model order reduction for nonlinear PDEs

Parametric model order reduction (pMOR, [1–3]) refers to a class of computational techniques that aim at
onstructing a low-dimensional surrogate (or reduced-order) model (ROM) for a given physical system, over a
ange of parameters. In the last few decades, pMOR techniques have received significant attention in science and
ngineering, to speed up parametric studies. For complex, large-scale systems with many parameters, methods
hat combine pMOR with domain decomposition (DD) methods are of paramount importance to deal with high-
imensional parameterizations and changes in domain topology. The aim of this work is to present a general DD
MOR strategy for linear and nonlinear steady partial differential equations (PDEs).

∗ Corresponding author at: IMB, UMR 5251, Univ. Bordeaux, 33400 Talence, France.
E-mail addresses: angelo.iollo@inria.fr (A. Iollo), giulia.sambataro@inria.fr (G. Sambataro), tommaso.taddei@inria.fr (T. Taddei).
ttps://doi.org/10.1016/j.cma.2022.115786
045-7825/© 2022 Elsevier B.V. All rights reserved.

http://www.elsevier.com/locate/cma
https://doi.org/10.1016/j.cma.2022.115786
http://www.elsevier.com/locate/cma
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cma.2022.115786&domain=pdf
mailto:angelo.iollo@inria.fr
mailto:giulia.sambataro@inria.fr
mailto:tommaso.taddei@inria.fr
https://doi.org/10.1016/j.cma.2022.115786


A. Iollo, G. Sambataro and T. Taddei Computer Methods in Applied Mechanics and Engineering 404 (2023) 115786

b
d
s
s

i

s

f

C
s
t
w
O

Fig. 1. Configuration considered for illustration in Section 1 and for the analysis of the linear coercive problem in Section 4.

Standard (monolithic) pMOR techniques rely on high-fidelity (HF) solves at the training stage, which might
e unaffordable for very large-scale problems; furthermore, they rely on the assumption that the solution field is
efined over a parameter-independent domain or over a family of diffeomorphic domains: to address these issues,
everal authors have proposed component-based pMOR procedures (cf. [4] and the review [5]). During the offline
tage, a library of archetype components is defined, and local reduced-order bases (ROBs) as well as local ROMs

are built; then, during the online stage, local components are instantiated to form the global system and the global
solution is estimated by coupling local ROMs.

CB-pMOR strategies consist of two distinct building blocks: (i) a rapid and reliable DD strategy for online global
predictions, and (ii) a localized training strategy exclusively based on local solves for the construction of the local
approximations. In this work, we focus exclusively on (i); we refer to [6,7] and [8, section 8.1.7] for recent works
on localized training for nonlinear elliptic PDEs.

We propose a general component-based pMOR procedure for steady PDEs based on overlapping subdomains,
with a particular focus on second-order nonlinear elliptic PDEs. The key features of the approach are twofold: (i) a
constrained optimization statement that penalizes the jump at the components’ interfaces subject to the approximate
(in a sense to be defined) satisfaction of the PDE in each deployed (instantiated) component; (ii) the decomposition
of the local solutions into a port component – associated with the solution on interior boundaries (ports) – and a
bubble component that vanishes at ports, to enable effective parallelization of the online solver.

1.2. One-shot overlapping Schwarz method

We first introduce the formulation in the simplified case of two instantiated components Ω1,Ω2 (cf. Fig. 1)—to
simplify notation, we do not distinguish between archetype and instantiated components; in Section 2, we present
the formulation in the general setting. We denote by Xi ⊂ H 1(Ωi ) a suitable Hilbert space in Ωi ; we further define
the bubble space Xi,0 = {v ∈ Xi : v|Γi = 0} and the port space Ui = {v ∈ Xi : v|Γi = 0}, for i = 1, 2. Then, we
ntroduce the additive or multiplicative overlapping Schwarz (OS) iterations as⎧⎪⎨⎪⎩

find u(k)
1 ∈ X1 : G1(u(k)

1 , v) = 0 ∀ v ∈ X1,0, u(k)
1 |Γ1 = u(k−1)

2 ;

find u(k)
2 ∈ X2 : G2(u(k)

2 , v) = 0 ∀ v ∈ X2,0, u(k)
2 |Γ2 =

{
u(k)

1 ,

u(k−1)
1 ,

(1)

for k = 1, 2, . . .. Here, u(k)
i denotes the state estimate at the kth iteration in the i th subdomain, while G1,G2 are

the variational forms associated with the PDE of interest in Ω1,Ω2. Multiplicative Schwarz iterations correspond to
etting u(k)

2 |Γ2 = u(k)
1 in (1)2, while additive Schwarz iterations correspond to setting u(k)

2 |Γ2 = u(k−1)
1 . Convergence

of the OS iterations to a limit state (u⋆1, u⋆2) implies that ∥u⋆1 − u⋆2∥L2(Γ1∪Γ2) = 0. We thus propose to consider the
ormulation

min
u1∈X1,u2∈X2

∥u1 − u2∥L2(Γ1∪Γ2) s.t. Gi (ui , vi ) = 0 ∀ vi ∈ Xi,0, i = 1, 2. (2)

learly, the pair (u⋆1, u⋆2) is a solution to (2); in Section 4, we show that, provided that the overlapping size δ is
trictly positive, the solution to (2) is unique and depends continuously on data for linear coercive problems. Note
hat, for linear problems, the solution to (2) can be computed directly without the need for an iterative scheme:
e thus refer to our approach as to one-shot (OS) overlapping Schwarz (OS) method and we use the abbreviation
S2.1 From this point forward, we shall use the acronym OS to refer to the standard overlapping Schwarz method.

1 More rigorously, we should consider the acronym OSOS or (OS)2; however, we opted for OS2 to simplify the notation.
2
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In order to recast (2) into an unconstrained problem, we denote by up
1, up

2 the port solutions, that is the restrictions
of u1 and u2 to the corresponding ports; then, we introduce the extension operators Ei : Ui → Xi and the local

ort-to-bubble solution maps Fi : Ui → Xi,0 such that, given w ∈ Ui , we have Gi (Fi (w) + Eiw, vi ) = 0 ∀ vi ∈ Xi,0,
for i = 1, 2—note that the port-to-bubble field is uniquely determined by the corresponding port solution. Then,
we obtain the unconstrained OS2 statement:

min
up

1∈U1,u
p
2∈U2

f(up
1, up

2) := ∥F1(up
1) + E1up

1 − F2(up
2) − E2up

2∥
2
L2(Γ1∪Γ2). (3)

he present derivation can be viewed as a static condensation of bubble degrees of freedom and is similar in
cope to the approach in [4]. Following taxonomy from the optimization literature, we might view our approach as
lack-box—as opposed to all-at-once [9, section 1.1].

Note that (3) reads as a nonlinear least-squares problem: as in [10], we can thus resort to the Gauss–Newton
ethod which exploits the underlying structure of the objective function to enable rapid convergence of the CB-ROM

o the optimum.
Practical implementation of a CB-pMOR approach based on (2)–(3) requires to address three major tasks

i) (data compression) the minimization statement (3) is infinite-dimensional: we should thus drastically reduce the
imensionality of the port spaces U1,U2; (ii) (reduction of local problems) the local problems associated with the
valuation of the port-to-bubble maps are also infinite-dimensional: we should thus resort to standard (monolithic)
OR techniques to devise low-rank approximations of the bubble fields; (iii) (hyper-reduction of the objective

unction) evaluation of the objective function in (3) requires integration over the whole curve Γ1 ∪ Γ2: we should
hus devise a low-dimensional quadrature rule that requires evaluation of the local fields in a moderate number
f quadrature points. In this work, we propose specialized MOR strategies to address these three tasks: we resort
o proper orthogonal decomposition (POD, [11]) based on the method of snapshots [12] to build low-dimensional
ort spaces; we rely on Galerkin ROMs (see, e.g., [1–3]) with hyper-reduction based on empirical quadrature/mesh
ampling and weighting [13,14]; finally, we consider two distinct approaches to speed up the computation of the
bjective function: the former is based on empirical quadrature, while the latter relies on the empirical interpolation
ethod (EIM, [15]) .
Exploiting the static condensation of the bubble degrees of freedom, we can interpret the OS2 ROM as a

inimum residual formulation of the port (or interface) problem associated with the underlying PDE. We discuss
his interpretation for linear coercive problems in Section 4. We remark that, similarly to [16], our analysis exploits
variational interpretation of the Schwarz method.
The outline of the paper is as follows. In Section 2, we present the variational OS2 formulation for general

onlinear PDEs in arbitrary geometries. In Section 3, we discuss the construction of local approximation spaces,
yper-reduction of the local models and of the objective function. In Section 4, we discuss the well-posedness
f the OS2 statement for linear coercive problems and we present an a priori error analysis of the OS2 ROM;
urthermore, we comment on the connection between OS and OS2 and we provide explicit convergence rates for two
epresentative one-dimensional problems. In Section 5, we investigate performance of our method for a nonlinear
lasticity problem. Section 6 concludes the paper.

.3. Relation to previous works

The aim of this work is to devise a CB-pMOR DD strategy for nonlinear PDEs: we emphasize the development of
n effective solution strategy based on the Gauss–Newton method and on hyper-reduction of the objective function
nd of the local problems. The literature on DD for MOR and reduced-order model /full-order model (ROM-FOM)
oupling is extremely vast: CB-pMOR strategies have been presented in [4,8,17–20] and also recently reviewed
n [5]; ROM/FOM coupling strategies have been proposed for a broad range of applications including compressible
ows [21–24] incompressible flows [25–27], and structural mechanics [28–30]—these methods do not distinguish
etween archetype and instantiated components and do not necessarily involve the training of a library of local
OMs. Recently, several authors have proposed to couple iterative Schwarz DD strategies with local non-intrusive
OMs based on neural network approximations [31,32].

The OS2 statement shares several features with the minimization formulation first proposed in [33] in the DD
iterature, for coercive linear elliptic PDEs. OS2 is also tightly linked to the method proposed in [34] for the coupling

f local and nonlocal diffusion models (see also [35]): as in [34], we interpret the OS2 statement as a control

3
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problem; while in [34] the controls are the nonlocal volume constraint and the local boundary condition, in this
work the controls are the local solutions at ports. We also observe that the authors of [34] do not exploit the nonlinear
least-square structure of the problem and rely on a quasi-Newton scheme to approximate the solution. We show
that the choice of using the port solutions as control variables enables the definition of configuration-independent
archetype components and is thus key for CB-pMOR.

Our approach is related to the Galerkin-free approach proposed in [36] and further developed in [26]. In [26,36],
he authors consider a HF model in the region of interest and rely on a low-dimensional expansion for the far-
eld; instead of projecting the equations in the far-field onto a low-dimensional test space, they simply rely on the
bjective function to compute the far-field solution coefficients (Galerkin-free). Exploiting notation introduced in
he previous section, we can state the methods in [26,36] as:

min
u1∈X1,w2∈Z2

∥u1 − u2∥L2(Ω1∩Ω2) s.t. G1(u1, v1) = 0 ∀ v1 ∈ X1,0,

here X1 denotes the HF space in Ω1 and Z2 denotes the reduced-order space in Ω2. The approach presented in
his work is more general, more robust and also leads to more efficient online calculations, at the price of a much

ore involved implementation.
Our approach is linked to the minimum residual formulation in [8]: the authors consider a minimization statement

n which continuity of solution and fluxes is enforced as a constraint in the formulation, while the global dual
esidual enters directly in the objective function. The imposition of continuity in the objective function removes
ompatibility requirements at ports and allows the use of independent spaces in each archetype component; in
articular, the use of an overlapping partition allows us to neither explicitly enforce continuity of the solution at
orts nor to enforce continuity of normal fluxes. For highly-nonlinear PDEs, we found that this feature remarkably
implifies the implementation of our method and ultimately increases its flexibility.

Finally, the OS2 approach can be interpreted as an alternative to the partition-of-unity method (PUM, [37])
onsidered in [7]. Given local approximation spaces, PUM relies on the introduction of a partition of unity to define
global approximation space, and on Galerkin projection to devise the ROM for the deployed system. PUM has

trong theoretical guarantees both in terms of approximation and in terms of quasi-optimality properties. Similarly
o OS2, PUM requires efficient mesh interpolation to achieve online efficiency. The major difference between OS2
nd PUM is that PUM relies on a global variational formulation based on a single model: on the other hand, since
n OS2 local models are independent of each other, OS2 can be used to couple different models in different regions
f the domain.

. Formulation

.1. Preliminary definitions

We use the superscript (·)a to indicate quantities and spaces defined for a given archetype component; we further
enote by ℓ a generic element of the library L of archetype components. We define the archetype components
Ω a
ℓ }ℓ∈L ⊂ Rd ; we denote by Γ a,dir

ℓ the open subset of ∂Ω a
ℓ where we impose Dirichlet boundary conditions,

nd we denote by Γ a
ℓ the portion of ∂Ω a

ℓ that lies inside the computational domain (“port”). For each archetype
omponent ℓ ∈ L, we define the local discrete high-fidelity (HF) finite element (FE) space X a

ℓ ⊂ [H 1
0,Γ a,dir

ℓ

(Ω a
ℓ )]D

here D denotes the number of state variables, the bubble space X a
ℓ,0 = {v ∈ X a

ℓ : v|Γ a
ℓ

= 0}, and the port
pace U a

ℓ = {v|Γ a
ℓ

: v ∈ X a
ℓ } ⊂ [H 1/2(Γ a

ℓ )]D . We endow X a
ℓ with the inner product (·, ·)ℓ and the induced norm

· ∥ℓ =
√

(·, ·)ℓ, we define N a
ℓ = dim

(
X a
ℓ

)
, and the extension operator Ea

ℓ : U a
ℓ → X a

ℓ such that(
Ea
ℓw, v

)
ℓ
= 0 ∀ v ∈ X a

ℓ,0, Ea
ℓw
⏐⏐
Γ a
ℓ

= w, ∀w ∈ U a
ℓ . (4)

hroughout the paper, we consider the standard H 1 inner product, that is (w, v)ℓ =
∫
Ωa
ℓ
∇w · ∇v + w · v dx .

e define the vector of local parameters µℓ in the parameter region Pℓ, which include geometric and material
arameters that identify the physical model in any instantiated component of type ℓ. We define the variational form
a
ℓ : X a

ℓ × X a
ℓ,0 × Pℓ → R such that

Ga
ℓ(w, v;µℓ) =

N e
ℓ∑ ∫

η
a,e
ℓ (w, v;µℓ) dx +

∫
η

a,f
ℓ (w, v;µℓ) dx (5)
k=1 Dℓ,k ∂Dℓ,k

4
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where N e
ℓ is the number of mesh elements, {Dℓ,k}

N e
ℓ

k=1 denote the elements of the FE mesh for the archetype component
Ω a
ℓ , and the element and facet forms ηa,e

ℓ and ηa,f
ℓ encode the dependence on the problem of interest: we provide

heir definition for the problem considered in the numerical examples in (9). Furthermore, for any ℓ ∈ L, we define
he parametric mapping Φa

ℓ : Ω a
ℓ × Pℓ → Rd that describes the deformation of the archetype component ℓ for the

parameter value µℓ ∈ Pℓ.
A physical system with Ndd components is uniquely described by a function L : {1, . . . , Ndd} → L that associates

to each instantiated component i ∈ {1, . . . , Ndd} the corresponding archetype component Li ∈ L, and the set of
arameters µ := (µ1, . . . , µNdd ) ∈ P :=

⨂Ndd
i=1 PLi . Given µ ∈ P , we define

(i) the mappings {Φi }
Ndd
i=1 such that Φi = Φa

Li
(·;µi ) for i = 1, . . . , Ndd;

(ii) the instantiated overlapping partition {Ωi = Φi (Ω a
Li

)}Ndd
i=1, the global open domain Ω ⊂ Rd such that

Ω =
⋃

i Ω i , the ports Γi = Φi (Γ a
Li

) and the Dirichlet boundaries Γ dir
i = Φi (Γ

a,dir
Li

), for i = 1, . . . , Ndd;
(iii) the deployed FE full, bubble, and port spaces Xi = {v ◦ Φ−1

i : v ∈ X a
Li

}, Xi,0 = {v ◦ Φ−1
i : v ∈ X a

Li ,0
}, and

Ui = {v|Γi : v ∈ Xi }, for i = 1, . . . , Ndd;
(iv) the extension operators Ei : Ui → Xi such that Eiw = Ea

Li
(w ◦ Φi ) ◦ Φ−1

i for i = 1, . . . , Ndd;
(v) the deployed variational forms Gi : Xi × Xi,0 → R such that

Gi (w, v) = Ga
Li

(w ◦ Φi , v ◦ Φi ;µi ). (6)

iven i = 1, . . . , Ndd, we further define the set of neighboring elements Neighi = { j : Ω j ∩ Ωi ̸= ∅, j ̸= i},
nd the partition of Γi {Γi, j = Γi ∩ Ω j : j ∈ Neighi }. Note that, exploiting the previous definitions, the condition

x ∈ Γi, j ∩ Γ j,i implies that x ∈ ∂Ωi ∩ Ωi : since Ωi is an open sets, ∂Ωi ∩ Ωi = ∅ and thus Γi, j ∩ Γ j,i = ∅ for any
, j = 1, . . . , Ndd.

Given the archetype mesh T a
ℓ =

(
{xa,v
ℓ, j }

N v
ℓ

j=1, Tℓ

)
, with nodes {xa,v

ℓ, j }
Nv
ℓ

j=1, connectivity matrix Tℓ and elements

Dk,ℓ}
N e
ℓ

k=1, we denote by u a generic element of Xℓ and we denote by u ∈ RDNv
ℓ the corresponding FE vector

ssociated with the Lagrangian basis of T a
ℓ , for all ℓ ∈ L. Following [38], we pursue a discretize-then-map treatment

f parameterized geometries: given the mesh T a
Li

, we state the local variational problems in the deformed mesh

i

(
T a
Li

)
=

(
{Φi

(
xa,v

j,Li

)
}

N v
Li

j=1, TLi

)
. In Section 3.2, we discuss the hyper-reduced formulation of the local problems.

ote that if
(
T a
ℓ ,u

)
is associated with the element u ∈ Xℓ, then

(
Φi (T a

ℓ ),u
)

approximates u ◦ Φ−1.

.2. Model problem

We illustrate the many elements of the formulation for the two-dimensional (plane stress) nonlinear (neo-
ookean) elasticity problem considered in the numerical experiments. The problem shares the same geometric

onfiguration with the problem studied in [39] for radioactive management applications. We consider the constitutive
aw for the first Piola Kirchhoff stress tensor

P(F(u)) = λ2
(
F(u) − F(u)−T )

+ λ1 log (det(F(u))) F(u)−T . (7a)

ere, F(u) = 1+∇u is the deformation gradient associated with the displacement u, λ1, λ2 are the Lamé constants
iven by

λ1 =
Eν

1 − ν2 , λ2 =
E

2(1 + ν)
, (7b)

where E is the Young’s modulus, and ν is the Poisson’s ratio. We consider the domain Ω = (0, 1)2 depicted in
Fig. 2; we set ν = 0.3 and we consider E = Ek in ωk for k = 1, 2, 3. We prescribe normal homogeneous Dirichlet
conditions on the left and right boundaries; homogeneous Dirichlet conditions on the bottom boundary Γbtm and
the Neumann conditions:

P(F(u))n
⏐⏐
Γtop

= gtop :=

[
0
−4x1(1 − x1)

]
, P(F(u))n

⏐⏐
Γr,q

= gr := −s
[

0
1

]
, q = 1, . . . , Qa (7c)
with s > 0.

5
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Fig. 2. Global system. Γtop and Γr,1, . . . ,Γr,Qa are associated with the stress conditions; the regions {Γr,q }q are of equal size ℓr > 0, and
the distance between consecutive regions is constant and equal to d> ℓr.

The system of equations below summarizes the problem: we seek the solution u : Ω → R2 to the system⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−∇ · P(F(u)) = 0 in Ω
u · n = 0 on {0, 1} × (0, 1)
P(F(u))n = gr on Γr
P(F(u))n = gtop on Γtop
u = 0 on Γbtm = (0, 1) × {0} \ Γr

(8)

where Γr =
⋃Qa

q=1 Γr,q. Our goal is to estimate the solution to (8) for any choice of the Young’s moduli (E1, E2, E3)
ssociated with the regions ω1, ω2, ω3 in [25, 30] × [10, 20] × [10, 20], any value of s ∈ [0.4, 1] in (7c), and any

Qa ∈ {2, . . . , 7}. Note that variations of Qa induce topological changes that prevent the application of standard
onolithic techniques.
We introduce the library of components Ω a

int and Ω a
ext depicted in Figs. 3; in 4 we show examples of instantiated

omponents and we identify the corresponding ports. We denote by δ > 0 the size of the overlap. The mapping
a
int associated with the internal component is a simple horizontal shift, while the mapping Φa

ext associated with
he external component consists in a piecewise-linear map in the horizontal direction and the identity map in the
ertical direction. The internal component is uniquely described by the vector of parameters µint = [E1, s, xshift]
here xshift denotes the magnitude of the horizontal shift; the external component is described by the vector of
arameters µext = [E1, E2, E3,dext] with dext = Qad− δ. Note that the external archetype component (cf. Fig. 3)
orresponds to the choice Qa = Qref with Qref = 5. We then introduce the variational forms:⎧⎪⎪⎪⎨⎪⎪⎪⎩

Ga
int(w, v;µint) =

∫
Ωa

int

η
a,e
int (w, v;µint) dx +

∫
Γ a

r

η
a,f
int (w, v;µint) dx,

Ga
ext(w, v;µext) =

∫
Ωa

ext

η
a,e
ext(w, v;µint) dx +

∫
Γ a

top

η
a,f
ext(w, v;µext) dx .

(9a)

xplicit expressions of ηa,e
ℓ and ηa,f

ℓ can be obtained by resorting to change-of-variable formulas: given the mapping
, we denote by ∇Φ = ∇Φ−T

∇ the corresponding “mapped” gradient and we define ∇s,Φ =
1
2

(
∇Φ + ∇

T
Φ

)
and

FΦ = 1+ ∇Φ . Then, we have (we omit dependence on the parameter to shorten notation)

η
a,e
int (w, v) = η

a,e
ext(w, v) = P(FΦ(w)) : ∇s,Φv det(∇Φ),

η
a,f
int (w, v) = v · (gr ◦ Φ) ∥∇Φ̂t∥2, η

a,f
ext(w, v) = v ·

(
gtop ◦ Φ

)
∥∇Φ̂t∥2,

(9b)

here t̂ denotes the tangent vector to the surface.

.3. Hybridized statement

.3.1. High-dimensional formulation
We generalize below the OS2 statement introduced in Section 1. Given the set of parameters µ = (µ1, . . . , µNdd )
P =

⨂Ndd
i=1 PLi , we propose the CB full-order model: find uhf

= (uhf
1 , . . . , uhf

Ndd
) ∈ X :=

⨂Ndd
i=1 Xi to minimize

min
u∈X

1
2

Ndd∑ ∑
∥ui − u j∥

2
L2(Γi, j ) s.t. Gi (ui , vi ) = 0 ∀ vi ∈ Xi,0, i = 1, . . . , Ndd. (10)
i=1 j∈Neighi

6
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Fig. 3. Geometrical configuration. Archetype components. (Qref = 5).

Fig. 4. Geometrical configuration. Examples of deployed components. (a): i, j = 1, . . . , Qa, (b): i = 1, j = Ndd = Qa + 1. The overlap
rea is marked in yellow. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
his article.)

ote that (10) reduces to (2) for the case of two overlapping components.
To derive the hybridized formulation, we define the port-to-bubble maps Fi : Ui → Xi,0 such that, given w ∈ Ui ,

Gi (Fi (w) + Eiw, v) = 0 ∀ v ∈ Xi,0. (11a)

ote that (11a) corresponds to the FE solution to a localized PDE problem with datum w on Γi . Then, we rewrite
10) as the unconstrained least-square problem: find uhf,p

= (uhf,p
1 , . . . , uhf,p

Ndd
) ∈ U :=

⨂Ndd
i=1 Ui to minimize

min
up∈U

1
2

Ndd∑
i=1

∑
j∈Neighi

∥up
i − E j u

p
j − F j (u

p
j )∥

2
L2(Γi, j ). (11b)

inimization problem (11b) reads as a nonlinear least-square problem; in the following we devise a low-dimensional
educed-order approximation of (11b) based on Galerkin projection of the port-to-bubble maps.

.3.2. Reduced-order formulation
For all ℓ ∈ L, we introduce the low-dimensional archetype bubble and port spaces Za,b

ℓ ⊂ Xℓ,0, Za,p
ℓ ⊂ Uℓ

nd the extended port spaces Wa,p
ℓ = {Eℓζ : ζ ∈ Za,p

ℓ } ⊂ Xℓ; we denote by n and m the dimensions of the
ubble and port spaces, respectively; for simplicity, we assume that the dimension of the spaces is the same for all
rchetype components. We also define the archetype ROBs Z a,b

ℓ : Rn
→ Za,b

ℓ and W a,b
ℓ : Rm

→ Wa,b
ℓ . Given the

eployed system, we introduce the instantiated (or deployed) bubble and port spaces Zb
i = {ζ ◦Φ−1

i : ζ ∈ Za,b
Li

} and
p
i = {ζ ◦ Φ−1

i : ζ ∈ Wa,p
Li

} with ROBs Zb
i = [ζ b

i,1, . . . , ζ
b
i,n] : Rn

→ Zb
i and W b

i = [ψp
i,1, . . . , ψ

p
i,m] : Rm

→ Wp
i ,

espectively. Then, we define the ansatz:ˆ ˆ bˆ pˆ
ûi (αi ,β i ) = Z i αi + Wi β i , i = 1, . . . , Ndd. (12)

7
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We observe that ûb
i = Zb

i α̂i should approximate the bubble field u|Ωi − Ei (u|Γi ), while ûp
i = W p

i β̂ i is an
approximation of the (extended) port field Ei (u|Γi ): we refer to ûb

i , ûp
i as to the bubble and port estimates of the

solution field in the i th component.
To obtain the low-dimensional formulation, we introduce the local residuals2 (cf. (5), (6) and (9))

R̂hf
i : Rn

× Rm
→ Rn s.t.

(
R̂hf

i

(
αi ,β i

))
j = Gi

(̂
ui (αi ,β i ) , ζ

b
i, j

)
, i = 1, . . . , Ndd, j = 1, . . . , n, (13a)

nd the approximate port-to-bubble maps F̂
hf
i : Rm

→ Rn such that R̂hf
i

(
F̂

hf
i

(
β i
)
,β i

)
= 0. Computation of the port-

o-bubble maps { F̂
hf
i }i is expensive due to the need to integrate over the whole computational mesh. We thus replace

he residuals {R̂hf
i }i with the empirical quadrature (EQ) approximations {R̂eq

i }i and we define the hyper-reduced
ort-to-bubble maps F̂

eq
i : Rm

→ Rn such that

R̂eq
i

(̂
F

eq
i

(
β i
)
,β i

)
= 0. (13b)

e discuss in Section 3.2 the hyper-reduction strategy employed to construct the approximate residuals R̂eq
i ; here,

e observe that the gradient of the port-to-bubble map can be obtained by differentiating (13b):

∇F
eq
i

(
β i
)

= −
(
∂αi R̂

eq
i

)−1
∂βi R̂

eq
i

⏐⏐⏐
(αi ,βi ) = (̂Feq

i (βi),βi )
(13c)

e remark that the existence and well-posedness of the port-to-bubble maps (13b) is conditioned to the existence of
olutions to the nonlinear systems of equations R̂hf

i = 0 and to the fact that ∂αi R̂
hf
i is non-singular at the optimum.

t thus depends on the particular problem of interest, and might also depend on the overlapping partition considered
nd on the reduced-order approximation spaces.

We now focus on the objective function. We observe that

1
2

Ndd∑
i=1

∑
j∈Neighi

∫
Γi, j

∥ûi (x) − û j (x)∥2
2 dx

=
1
2

Ndd∑
i=1

∫
Γi

⎛⎝ ∑
j∈Neighi :x∈Ω j

∥ûi (x) − û j (x)∥2
2

⎞⎠ dx

=
1
2

Ndd∑
i=1

∫
Γ a
Li

⎛⎝ ∑
j∈Neighi :Φi (̂x)∈Ω j

∥ûi (Φi (̂x)) − û j (Φi (̂x))∥2
2

⎞⎠ J bnd
i (̂x) dx̂

where J bnd
i = ∥ det(∇Φi )∇Φ−T

i na
Li

∥2 and na
ℓ is the outward normal to Γ a

ℓ . Note that in the last identity we used the
Narson formula; furthermore, to shorten notation, we omitted dependence of ûi , û j on bubble and port coefficients

(cf. (12)). We introduce the HF quadrature rules {(xp
ℓ,q , ρ

p
ℓ,q )}

Np
ℓ

q=1 on the archetype ports Γ a
ℓ for ℓ ∈ L; then, we

have

1
2

Ndd∑
i=1

∑
j∈Neighi

∫
Γi, j

∥ûi (αi ,β i ) − û j (α j ,β j )∥
2
2 dx ≈

1
2

Ndd∑
i=1

ρ
p
Li

· η
p
i (α,β) (14a)

where α = [α1, . . . ,αNdd ] ∈ RN with N := nNdd, β = [β1, . . . ,βNdd
] ∈ RM , and

η
p
i (α,β) =

⎡⎢⎢⎢⎣
η

p
i

(
Φi (x

p
ℓ,1);α,β

)
...

η
p
i

(
Φi (x

p
ℓ,N p

ℓ

);α,β
)
⎤⎥⎥⎥⎦ (14b)

ith

η
p
i (x;α,β) =

⎛⎝ ∑
j∈Neighi :x∈Ω j

∥ûi (x;αi ,β i ) − û j (x;α j ,β j )∥
2
2

⎞⎠ J bnd
i (Φ−1

i (x)), (14c)

2 The superscript hf encodes the fact that the local residuals are computed using the HF mesh.
8
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for i = 1, . . . , Ndd.
Evaluation of (14) is expensive due to the need to integrate over the port boundaries

⋃Ndd
i=1

⋃
j∈Neighi

Γi, j : we
should thus replace the HF quadrature vectors {ρ

p
ℓ}ℓ∈L with sparse EQ vectors {ρ

p,eq
ℓ }ℓ∈L. In conclusion, we obtain

the discrete OS2 formulation: find β̂ = [β̂1, . . . , β̂Ndd
] ∈ RM such that

β̂ ∈ arg min
β∈RM

feq(β) = F
(̂
Feq(β), β, {ρp,eq

ℓ }ℓ∈L
)

(15a)

where F̂eq
: RM

→ RN is the full port-to-bubble map such that F̂eq(β) =

[̂
F

eq
1 (β1), . . . , F̂eq

Ndd
(βNdd

)
]T

, and

F
(
α, β, {ρ

p,eq
ℓ }ℓ∈L

)
=

1
2

Ndd∑
i=1

ρ
p,eq
Li

· η
p
i (α,β). (15b)

If we denote by Q the total number of quadrature points with repetitions times the number of state variables D,

Q := D

⎛⎜⎝ Ndd∑
i=1

Np
Li∑

q=1

card
{

j : Φi (x
p
Li ,q ) ∈ Ω j

}
H (ρp,eq

Li ,q )

⎞⎟⎠ , with H (x) =

{
1 if x > 0
0 otherwise (15c)

we find that there exist P ∈ RQ×N and Q ∈ RQ×M such that

feq (β) =
1
2
∥req (β) ∥2

2, where req (β) = P F̂eq(β) + Qβ. (15d)

.4. Discussion

The remarks below provide a number of comments on the OS2 statement introduced in the previous section.

emark 1 (Algebraic Representation of the Local ROBs). Exploiting notation introduced at the end of Section 2.1,
he archetype bubble ROB Z a,b

ℓ : Rn
→ Za,b

ℓ admits the algebraic representation Z a,b
ℓ : α ∈ Rn

↦→
(
T a
ℓ ,Zb

ℓα
)

or some Zb
ℓ ∈ RN a

ℓ
×n , while the deployed operators can be stated as Zb

i : α ∈ Rn
↦→

(
Φi (T a

Li
),Zb

Li
α
)
, for

= 1, . . . , Ndd. Note that by virtue of the correspondence between archetype and deployed spaces, we do not
ave to explicitly instantiate – and then store – the bubble ROBs for each configuration. The same applies for the
ort bases.

emark 2 (Extension to Non-Homogeneous Dirichlet Conditions). The OS2 formulation can readily deal with
non-homogeneous Dirichlet boundary conditions. Towards this end, for i = 1, . . . , Ndd, given the Dirichlet datum
gdir

i : Γ dir
i → RD , we introduce the lift udir

i such that udir
i |Γdir

i
= gdir

i , and the ansatz

ûi (̂αi , β̂ i ) = udir
i + Zb

i α̂i + W p
i β̂ i , i = 1, . . . , Ndd.

Here, ûb
i = Zb

i α̂i should approximate the bubble field u|Ωi − Ei ((u − udir
i )|Γi ) − udir

i , while ûp
i = W p

i β̂ i is an
approximation of the (extended) port field Ei ((u − udir

i )|Γi ). Then, we can proceed as before to derive the reduced
port-to-bubble maps and the low-dimensional OS2 formulation. We refer to [40] for a thorough discussion on the
imposition of Dirichlet boundary conditions in Galerkin ROMs.

Remark 3 (Computation of the Matrices P,Q). The matrices P,Q depend on the configuration of interest but are
ndependent of the port coefficients β: they can thus be defined after having instantiated the system and before
olving the optimization problem. Since the port quadrature points {Φi (x

p
Li ,q )}i,q are configuration-dependent, we

hould resort to mesh interpolation to assemble the matrices P and Q. In this work, we rely on structured meshes
n the archetype components that enable logarithmic-in-N v

ℓ FE interpolations.

emark 4 (Hyper-reduction). As required in CB-pMOR, hyper-reduction should be defined at the component level
nd is then translated to the deployed system using the mappings {Φi }i . From an algorithmic standpoint, an archetype

omponent ℓ ∈ L should be interpreted as a complex data structure that comprises (i) bubble and port ROBs; (ii)

9
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r
e

the approximate residual R̂eq
ℓ that enables effective computations of port-to-bubble maps; (iii) the port quadrature

ule ρp,eq
ℓ associated with the approximate objective function (15a); and (iv) a (structured) mesh structure for which

fficient (i.e., logarithmic-in-N v
ℓ ) interpolation procedures are available for the computation of the matrices P,Q.

2.5. Solution to the OS2 minimization problem

In view of the description of the numerical solution to (15), we observe that the Jacobian of the global
port-to-bubble map F̂eq

: RM
→ RN is block-diagonal (cf. (13c)):

Ĵeq
F (β) = diag

[̂
Jeq
F1

(β1), . . . , Ĵeq
FNdd

(βNdd
)
]
, Ĵeq

Fi
(β i ) := −

(
∂αi R̂

eq
i

)−1
∂βi R̂

eq
i

⏐⏐⏐
(αi ,βi ) = (̂Feq

i (βi),βi )
. (16a)

Then, we observe that

∇req
= P̂Jeq

F + Q, ∇ feq
=
(
P̂Jeq

F + Q
)T req. (16b)

If Ndd ≫ m (as in the cases considered e.g. in [4,19]), the Jacobian Ĵeq
F is highly sparse; note that explicit assembly

of the local Jacobians requires to solve m linear systems of size n, while matrix–vector multiplications Ĵeq
F v and

vT Ĵeq
F require Ndd n × m matrix–vector multiplications and Ndd linear solves of size m.

The nonlinear least-square problem (15) can be solved using (i) steepest-descent or quasi-Newton methods, or
(ii) Gauss–Newton or Levenberg–Marquandt algorithms, [41].

(i) Steepest-descent or quasi Newton methods only require the explicit calculation of the objective function feq

and its gradient ∇ feq, which can be computed without explicitly forming Ĵeq
F . However, these methods do

not exploit the underlying least-square structure of the optimization problem and might thus exhibit slower
convergence and/or might be more prone to divergent behaviors.

(ii) The Gauss–Newton method (GNM) reads as

β̂
(k+1)

= β̂
(k)

−

(
∇req

(
β̂

(k)
))†

req
(
β̂

(k)
)

where (·)† denotes the Moore–Penrose pseudo-inverse. The Levenberg–Marquandt algorithm (LMA) is a
generalization of GNM that is typically more robust for poor choices of the initial condition. Note that
GNM/LMA are the methods of choice for least-squares problems; however, they require the assembly of
Ĵeq
F at each iteration.

Algorithm 1 summarizes the overall procedure as implemented in our code, which relies on GNM to solve (15);
we envision that our approach can cope with LMA with only minor changes: we omit the details. Note that we
update at each iteration the estimates of the bubble coefficients: this is important to speed up the solution to the local
Newton problems. In addition, the algorithm requires to provide an initial guess for port and bubble coefficients;
we discuss the choice of the initial condition in Section 3 (cf. Eq. (20)).

As explained in [42], for nonlinear least-squares problems of the form (15d), Gauss–Newton’s method shows
quadratic convergence if req

(
β̂
)

= 0 and a super-linear convergence if ∥req
(
β̂
)
∥2 is small. In the numerical results,

we also investigate performance of a quasi-Newton method—the limited-memory BFGS method [41]. Note that the
implementation of the latter follows a similar procedure as in Algorithm 1 with only minor changes: we omit the
details.

Remark 5. We remark that the internal loop at lines 4–7 in Algorithm 1 and the construction of the matrices P,Q
are embarrassingly parallelizable.

3. Methodology

3.1. Data compression

In this work, we resort to global solves to construct the archetype ROBs {(Z a,b
ℓ ,W a,b

ℓ )}ℓ∈L, Z a,b
ℓ = [ζ a,b

ℓ,1 , . . . , ζ
a,b
ℓ,n ],

W a,p
= [ψa,p

, . . . , ψ
a,p]. We generate ntrain global configurations {µ(k)

}
ntrain and we denote by {

(
Ω (k)

, L
(k)
)
}i,k the
ℓ ℓ,1 ℓ,n k=1 i i

10
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O

Algorithm 1 Solution to (15) through the Gauss–Newton method.

Inputs: α(0)
= [α(0)

1 , . . . ,α
(0)
Ndd

], β(0)
= [β(0)

1 , . . . ,β
(0)
Ndd

] initial conditions (cf. Eq. (20)), tol > 0, maxit.

utputs: β̂ port coefficients, α̂ = F̂
eq(β̂) bubble coefficients.

1: Compute the matrices P,Q in (15d).

2: Set β̂
(0)

= β (0) and α̂ = α(0).

3: for k = 1, . . . , maxit do
4: for i = 1, . . . , Ndd do
5: Compute αi s.t. R̂eq

i (αi ,β
(k)
i ) = 0 using Newton’s method with initial condition α̂i .

6: Compute Ĵeq
Fi

(β (k)
i ) (cf. (16)).

7: end for
8: Update α̂ = [α1, . . . ,αNdd ].

9: Compute req,(k)
= Pα̂ + Qβ̂ (k)

i and ∇req,(k)
= P̂Jeq

F + Q.

10: Compute β̂
(k+1)

= β̂
(k)

−
(
∇req,(k)

)† req,(k)

11: if ∥β̂
(k+1)

− β̂
(k)

∥2 < tol∥β̂
(k)

∥2 then, BREAK
12: end if
13: end for
14: Return β̂ = β̂

(k+1)
and α̂ = F̂

eq(β̂).

corresponding labeled partitions; we estimate the global solutions {u(k)
}

ntrain
k=1 using a standard FE solver and we

assemble the datasets

Dℓ =

{
u(k)

|
Ω

(k)
i

◦ Φ(k)
i : L

(k)
i = ℓ, k = 1, . . . , ntrain

}
⊂ X a

ℓ , ℓ ∈ L; (17a)

we further define the bubble and port datasets

Db
ℓ :=

{
w − Ea

ℓ(w|Γ a
ℓ
) : w ∈ Dℓ

}
, Dp

ℓ :=

{
Ea
ℓ(w|Γ a

ℓ
) : w ∈ Dℓ

}
; (17b)

finally, we apply POD based on the inner product (·, ·)ℓ, to obtain the local approximation spaces. Algorithm 2
summarizes the computational procedure.

In view of the application of the empirical quadrature procedures described in Sections 3.2 and 3.3.1, for all
ℓ ∈ L we further compute the projected coefficients {αℓ, j }

ntrain,ℓ
j=1 , {βℓ, j }

ntrain,ℓ
j=1(

αℓ, j
)

i =

(
ub
ℓ, j , ζ

a,b
ℓ,i

)
ℓ
,

(
βℓ, j

)
q =

(
up
ℓ, j , ψ

a,p
ℓ,q

)
ℓ
, ℓ ∈ L, (18)

for i = 1, . . . , n, q = 1, . . . ,m, j = 1, . . . , ntrain,ℓ, where ub
ℓ, j (resp., up

ℓ, j ) denotes the j th bubble (resp., port)
solution in the dataset Db

ℓ (resp., Dp
ℓ ).

We remark that the proposed approach — which was previously considered in [20] — might be highly inefficient
since it requires global solves that are often unfeasible in the framework of CB-pMOR. We envision to further extend
the localized training approach in [7] to address this issue. For practical applications, we envision that global solves
should be performed using a standard FE solver and then resorting to FE interpolation routines to extract the local
solutions: this procedure inevitably introduces an error at the scale of the FE mesh size between full-order and
reduced-order models. Even if this error might be negligible for applications, it hinders the interpretations of the
numerical investigations. To avoid this issue, in the numerical experiments, we rely on the HF model (11) to generate
the dataset of local solutions.
11
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Algorithm 2 Data compression based on global solves

Inputs: training parameters {µ(k)
}
ntrain
k=1 ; m, n ROB dimensions.

Outputs: {(Za,b
ℓ
,W a,b

ℓ
)}ℓ∈L ROBs; {α

(k)
ℓ

}
ntrain,ℓ
k=1 , {β

(k)
ℓ

}
ntrain,ℓ
k=1 local optimal coefficients.

1: Initialize Db
ℓ = Dp

ℓ = ∅ for ℓ ∈ L.
2: for k = 1, . . . , ntrain do
3: Estimate the global solution uµ to (8) using a global FE method.
4: Update the datasets Db

ℓ and Dp
ℓ using (17b).

5: end for

6: Perform POD to obtain the ROBs Z a,b
ℓ = [ζ a,b

ℓ,1 , . . . , ζ
a,b
ℓ,n ] and W a,p

ℓ = [ψa,b
ℓ,1 , . . . , ψ

a,b
ℓ,n ]

7: Define the optimal coefficients {α
(k)
ℓ }

ntrain,ℓ
k=1 , {β

(k)
ℓ }

ntrain,ℓ
k=1 using (18).

3.2. Hyper-reduction of port-to-bubble problems

We here rely on element-wise EQ, that is we replace the residuals (5) in (13a) with the weighted residual
ssociated with the variational form

Ga,eq
ℓ (w, v;µℓ) =

N e
ℓ∑

k=1

ρ
eq
ℓ,k

(∫
Dℓ,k

η
a,e
ℓ (w, v;µℓ) dx +

∫
∂Dℓ,k

η
a,f
ℓ (w, v;µℓ) dx

)
, (19)

where ρeq
ℓ = [ρeq

ℓ,1, . . . , ρ
eq
ℓ,N e

ℓ
]T is a sparse vector of non-negative weights.

This hyper-reduction approach, which has been considered in a number of previous works including [39], is
discussed for completeness in Appendix A. We anticipate that the algorithm takes as input the projected coefficients
(18) generated by Algorithm 2 and the associated local parameters, {α

( j)
ℓ ,β

( j)
ℓ , µ

( j)
ℓ }

ntrain,ℓ
j=1 .

We remark that, as discussed in [43], the use of elementwise- (as opposed to pointwise-) reduced quadrature
ormulations leads to significantly less efficient ROMs, particularly for high-order FE discretizations. On the other
and, elementwise reduced quadrature formulations are significantly easier to implement and can easily cope with
eometry deformations [38]. We refer to [44–46] for a thorough introduction to state-of-the-art hyper-reduction
echniques.

.3. Hyper-reduction of the objective function

Exploiting (15b), it is easy to verify that – we here stress dependence on the parameter value µ –

F
(
α, β, {ρ

p,eq
ℓ }ℓ∈L, µ

)
=

1
2

∑
ℓ∈L

⎛⎝∑
i :Li =ℓ

η
p
i (α,β, µ)

⎞⎠ · ρ
p,eq
ℓ =

1
2

∑
ℓ∈L

Ndd,ℓ∑
j=1

(
Gp
ℓ(α,β, µ)ρp,eq

ℓ

)
j ,

here Ndd,ℓ is the number of components of type ℓ and {Gp
ℓ}ℓ are suitable matrices; to provide a concrete example,

or the model problem of Section 2.2, we have

Gp
int(α,β, µ) =

⎡⎢⎢⎣
(
η

p
1(α,β, µ)

)T

...(
η

p
Qa

(α,β, µ)
)T

⎤⎥⎥⎦ , Gp
ext(α,β, µ) =

(
η

p
Qa+1(α,β, µ)

)T
.

n order to speed up the evaluation of feq, it is necessary to build a sparse quadrature rule {ρ
p,eq
ℓ }ℓ∈L. In the remainder

f this section, we propose two different strategies to address this task: the former relies on the solution to a suitable
parse representation problem and is tightly linked to the EQ procedure employed for hyper-reduction of the port-
o-bubble maps; the latter relies on a variant of the empirical interpolation method (EIM, [15]) for vector-valued

unctions.

12
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3.3.1. Empirical quadrature method
We denote by (α(k),β (k)) the projected bubble and port coefficients associated with the kth configuration µ(k)

nd Eq. (18); we further denote by (α(k)
0 ,β

(k)
0 ) the bubble and port coefficients associated with the sample means,

α
(k)
0 =

⎡⎢⎢⎣
α

(k)
0,1
...

α
(k)
0,Ndd,(k)

⎤⎥⎥⎦ , β
(k)
0 =

⎡⎢⎢⎣
β

(k)
0,1
...

β
(k)
0,Ndd,(k)

⎤⎥⎥⎦ , k = 1, . . . , ntrain, (20a)

here α(k)
0,i = α

avg

L
(k)
i

and β (k)
0,i = β

avg

L
(k)
i

, with

α
avg
ℓ :=

1
ntrain,ℓ

ntrain,ℓ∑
j=1

αℓ, j , β
avg
ℓ :=

1
ntrain,ℓ

ntrain,ℓ∑
j=1

βℓ, j , ∀ ℓ ∈ L. (20b)

e anticipate that (20) is used in the numerical results to initialize the Gauss–Newton’s algorithm.
Given the random samples s(k) iid

∼ Uniform(0, 1), we define the matrices

Cℓ =

⎡⎢⎢⎢⎢⎢⎣
Gp
ℓ (̃α

(1), β̃
(1)
, µ(1))

...

Gp
ℓ (̃α

(ntrain), β̃
(ntrain)

, µ(ntrain))
1T

⎤⎥⎥⎥⎥⎥⎦ , ∀ ℓ ∈ L, (21a)

where 1 is the vector with entries all equal to one, and α̃(k) and β̃
(k)

are random convex interpolations between the
projected bubble and port coefficients (α(k),β (k)) and the initial conditions for the GNM (α(k)

0 ,β
(k)
0 ),

α̃(k)
= (1 − s(k))α(k)

+ s(k)α
(k)
0 , β̃

(k)
= (1 − s(k))β (k)

+ s(k)β
(k)
0 , k = 1, . . . , ntrain. (21b)

The first ntrain blocks of Cℓ are associated to the “manifold accuracy constraints”, while the last row is associated
to the “constant accuracy constraint” [14]. Then, we compute the empirical weights {ρ

p,eq
ℓ }ℓ∈L by approximately

solving the non-negative least-square problem

min
ρ∈RNp

ℓ

∥Cℓ

(
ρ − ρ

p
ℓ

)
∥2, s.t. ρ ≥ 0 (21c)

up to a tolerance tolobj
eq using the Matlab function lsqnonneg, which implements the iterative procedure proposed

in [47].
The choice of the port and bubble coefficients {(̃α(k), β̃

(k)
)}k for the “accuracy constraints” in (21a) is justified by

the fact that the objective function should be accurate for all port and bubble coefficients considered during the GNM
iterations; this choice is found to empirically improve the conditioning of the non-negative least-square problem and
ultimately improve performance—compared to the choice α̃(k)

= α(k), β̃
(k)

= β (k). The constant function accuracy
constraint, which was first proposed in [14] for hyper-reduction of monolithic ROMs, is important to bound the ℓ1

norm of the empirical weights; we have indeed

∥ρ
p,eq
ℓ ∥1 ≤ |1 · (ρp,eq

ℓ − ρ
p
ℓ)| + ∥ρ

p
ℓ∥1 ≤ ∥Cℓ

(
ρ

p,eq
ℓ − ρ

p
ℓ

)
∥2 + ∥ρ

p
ℓ∥1, ∀ ℓ ∈ L. (22)

We also observe that, even if hyper-reduction is ultimately performed at the local level, for each archetype
component, the EQ procedure requires global solves to define the matrices {Cℓ}ℓ.

3.3.2. Empirical interpolation method
The objective function F is designed to penalize the jump of the solution at the components’ interface. Since the

jumps are dictated by the behavior of the port modes {ψ
a,p
ℓ,i }

m
i=1 on the ports Γℓ, we propose to replace the integral

in (14) with the discrete sum

1
2

Ndd∑
i=1

∑
j∈Neigh

∫
Γi, j

∥ûi (αi ,β i ) − û j (α j ,β j )∥
2
2 dx ≈

1
2

∑
p,eq

(
η

p
i (α,β, µ)

)
q , (23)
i q∈I
ℓ

13
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v
fi
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b
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c

where I
p,eq
ℓ ⊂ {1, . . . , N p

ℓ } are chosen so that we can adequately recover any element of Za,p
ℓ based on the

nformation at the points {xp
ℓ, j } j∈Ip,eq

ℓ
. Note that the approximation (23) is an inconsistent approximation of the

L2 integral (14); however, we expect – and we verify numerically – that the minimization of the right-hand side of
23) should control the jump at elements’ interfaces and ultimately ensure accurate performance.

We here rely on a variant of EIM to select the quadrature indices Ip,eq
ℓ . EIM was first proposed in [15] to identify

ccurate interpolation points for arbitrary sets of scalar functions. In this work, we resort to the extension of EIM to
ector-valued fields considered in [48]. We refer to the MOR literature for other variants of EIM for vector-valued
elds; in particular, we observe that the present algorithm returns exactly m quadrature points: we refer to [49,
lgorithm 2] and to [50] for extensions of EIM that resort to over-collocation to improve performance.
Algorithm 3 reviews the computational procedure: note that, for each ℓ ∈ L, the algorithm takes as input the

ort functions {ψ
a,p
ℓ,i }

m
i=1 and returns the indices I

p,eq
ℓ . Given the set of indices I

p,eq
ℓ and the space Za,p

ℓ , we denote
y Iℓ,m the approximation least-square operator

Iℓ,m(v) := I
(
v; I

p,eq
ℓ ,Za,p

ℓ

)
= arg min

ψ∈Za,p
ℓ

∑
j∈Ip,eq

ℓ

∥v(xp
ℓ, j ) − ψ(xp

ℓ, j )∥
2
2, ∀ v ∈ C(Γℓ;RD), ℓ ∈ L.

ote that for D > 1 Iℓ,m is not an interpolation operator.

Algorithm 3 Empirical Interpolation Method for vector-valued fields
Input: {ψ

a,p
ℓ,i }

m
i=1, ℓ ∈ L

Output: Ip,eq
ℓ = {i⋆ℓ,1, . . . , i

⋆
ℓ,m}

Set i⋆ℓ,1 := arg max
j∈{1,...,N p

ℓ
}

∥ψ
a,p
ℓ,1 (xp

ℓ, j )∥2, and define Iℓ,1 := I
(
·; {i⋆ℓ,1}, span{ψ

a,p
ℓ,1 }

)
for m ′

= 2, . . . ,m do
Compute rm′ = ψ

a,p
ℓ,m′ − Iℓ,m′−1

(
ψ

a,p
ℓ,m′

)
Set i⋆ℓ,m′ := arg max

j∈{1,...,N p
ℓ
}

∥rm′ (xp
ℓ, j )∥2

Update Iℓ,m′ := I
(
·; {i⋆ℓ, j }

m′

j=1, span{ψ
a,p
ℓ, j }

m′

j=1

)
.

end for

4. Analysis and interpretation for linear coercive problems

We analyze the OS2 statement for linear coercive problems. To simplify the presentation, we consider the
ase with two subdomains depicted in Fig. 1. We denote by (X , ∥ · ∥Ω ) the global ambient space such that

H 1
0 (Ω ) ⊂ X ⊂ H 1(Ω ); given the ports Γ1,Γ2 (cf. Fig. 1), we define the bubble and port spaces:

Xi,0 :=
{
v ∈ Xi : v|Γi = 0

}
, Ui :=

{
v|Γi : v ∈ Xi

}
, i = 1, 2.

We introduce the bilinear form a : X × X → R with continuity constant γ and coercivity constant α > 0, and we
introduce the linear functional f ∈ X ′. Then, we introduce the model problem:

find u⋆ ∈ X : a(u⋆, v) = f (v) ∀ v ∈ X . (24)

In Section 4.1, we derive the port formulation of the problem (24); in Section 4.2, we present two important results
for the port problem; in Section 4.3 we exploit the results of the previous section to derive an a priori bound for
the OS2 statement; in Section 4.4, we comment on an alternative variational interpretation of the OS2 statement;
finally, in Section 4.5, we derive explicit estimates for two representative model problems.

Given v ∈ Xi,0, we denote by vext
∈ X the trivial extension of v to Ω that is zero in Ω \ Ωi . We assume that a

and f are associated to a differential (elliptic) problem; in particular, we assume that

a(u, vext) = a
(

u
⏐⏐
Ωi
, v
)
, ∀ v ∈ Xi,0. (25)

Note that by construction we have f (vext) = f v for all v ∈ X .
( ) i,0

14
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a

4.1. Port formulation

We define the tensor-product space U = U1 ×U2 endowed with the inner product ⟨w, v⟩ =
∑

i=1,2(wi , vi )H1/2(Γi )
nd the induced norm |||·||| =

√
⟨·, ·⟩. We introduce the local solution operators Ti : Ui → Xi and G i : X ′

→ Xi,0

such that:

(Tiλ)
⏐⏐
Γi

= λ, a(Tiλ, v) = 0 ∀ v ∈ Xi,0; (26)

(G i f )
⏐⏐
Γi

= 0, a(G i f, v) = f (v) ∀ v ∈ Xi,0. (27)

Since the elements of Xi,0 can be trivially extended to zero in Ω \ Ωi , we have that the form a is continuous and
coercive in Xi,0 with continuity and coercivity constants bounded from above and below by γ and α, due to the
fact that Xi,0 ⊂ X .

Therefore, Ti and G i are well-defined linear bounded operators. By comparing the previous definitions with (11a),
we note that the affine operators Fi := Ti − Ei + G i f correspond to the port-to-bubble maps that are exploited to
derive the hybridized formulation in Section 2: we have u⋆|Ωi = Fiλ

⋆
i + Eiλ

⋆
i = Tiλ

⋆
i + G i f , where λ⋆i ∈ Ui is

equal to u⋆|Γi .
Given the trace operators χΓ1 : X2 → U1, χΓ2 : X1 → U2, we introduce the operators T : U → U and

G : X ′
→ U such that

Tλ =

[
χΓ1 T2λ2

χΓ2 T1λ1

]
, G f =

[
χΓ1 G2 f

χΓ2 G1 f

]
, ∀ λ ∈ U , f ∈ X ′. (28a)

Finally, we introduce the port problem: find λ⋆ ∈ U such that

ap(λ⋆, v) = fp(v) ∀ v ∈ U , where ap(λ, v) := ⟨λ− Tλ, v⟩, fp(v) := ⟨G f, v⟩. (28b)

Remark 6 (Connection with OS Methods). We can rewrite standard additive and multiplicative OS iterations using
the operators introduced in (28). In more detail, multiplicative OS iterations can be written as (see, e.g., [51, Chapter
1]) [

I d 0
−χΓ2 T1 I d

]
λ(k+1)

=

[
0 χΓ1 T2
0 0

]
λ(k)

+ G f, k = 1, 2, . . . ,

while additive OS iterations can be written as[
I d 0
0 I d

]
λ(k+1)

=

[
0 χΓ1 T2
χΓ2 T1 0

]
λ(k)

+ G f, k = 1, 2, . . . .

These identities imply that any fixed point of the OS iterations satisfies (28b) and thus OS and OS2 converge to
the same limit as k → +∞. As discussed in the introduction, this connection between OS and OS2 formulations
is valid for both linear and nonlinear problems; however, the analysis is strictly restricted to the linear case.

4.2. Analysis of the port problem

Proposition 1 clarifies the relationship between the variational statement (24) and the port problem (28); on the
other hand, Proposition 2 is key for the analysis of the OS2 ROM. Proofs are postponed to Appendix B. The results
rely on the introduction of a partition-of-unity (PoU, [37]) {φi }

2
i=1 ⊂ Lip(Ω;R) associated with {Ωi }

2
i=1 such that

2∑
i=1

φi (x) = 1,

{
0 ≤ φi (x) ≤ 1 ∀ x ∈ Ω ,

φi (x) = 0 ∀ x /∈ Ωi ,
i = 1, 2.

Proposition 1. Let u⋆ be the solution to (24). Then, λ⋆ =
(
u⋆|Γ1 , u⋆|Γ2

)
solves (28b). Conversely, if λ⋆ is a solution

⋆
∑2 (

⋆
)

to (28b), then u = i=1 Tiλi + G i f φi solves (24).

15
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Proposition 2. Let the operator T in (28a) be compact. Then, the form ap : U ×U → R defined in (28b) is inf-sup
stable and continuous, that is

αp = inf
w∈U

sup
v∈U

ap(w, v)
|||w||||||v|||

> 0, γp = sup
w∈U

sup
v∈U

ap(w, v)
|||w||||||v|||

< ∞. (29)

The proof of the compactness of the operator T depends on the underlying PDE. For several problems, including
the Laplace equation, the advection-diffusion-reaction equation, the Stokes equations, and the Helmholtz’s equation,
we can prove compactness of the operator T using Caccioppoli’s inequalities: we refer to [52, Appendix C] and also
[53] for further details. We further observe that Proposition 2 does not provide an explicit relationship among the
stability constant αp in Proposition 2, the PDE of interest and the size of the overlap. We envision that the derivation
of explicit bounds for the stability constant αp in terms of the PDE of interest and the size of the overlap will shed
light on the underlying properties of the OS2 formulation and might also lead to new algorithmic developments.
We note that there is a vast body of works that address the derivation of sharp estimates for the convergence of
overlapping Schwarz methods (see, e.g., [54,55]): the derivation of analogous results for this setting is beyond the
scope of the present paper.

As discussed in Appendix B, proofs of Propositions 1 and 2 rely on the fact that, if we introduce the spaces
X1,2 = {v|Ω1∩Ω2 : v ∈ X } and X 0

1,2 = {v ∈ X1,2 : v|Γ1∪Γ2 = 0}, the problem of finding u ∈ X1,2 such that

a(u, v) = 0 ∀ v ∈ X 0
1,2, u|Γ1 = λ1, u|Γ2 = λ2,

admits a unique solution for any (λ1, λ2) ∈ U . This result is trivial for coercive problems, but it is significantly less
trivial – and requires additional assumptions – for inf-sup stable problems and is not addressed in this work. On
the other hand, we envision that the analysis for nonlinear PDEs requires more sophisticated tools and is beyond
the scope of this work.

4.3. Analysis of the OS2 statement

We consider the following OS2 formulation for the linear problem (24):

find λ̂ = arg min
λ∈Zp

⏐⏐⏐⏐⏐⏐λ− T̂λ− Ĝ f
⏐⏐⏐⏐⏐⏐. (30)

Note that (30) corresponds to the OS2 statement (11) with the important difference that we replace the L2 norm
with the H 1/2 norm |||·|||. In particular, in our work, the space Zp in (30) is given by the tensor product of the local
port spaces, Zp

= Zp
1 × Zp

2 , and T̂ , Ĝ are associated to the approximate local solution operators that are obtained
by Galerkin projection. We further introduce the OS2 formulation with perfect local operators:

find λ̃ = arg min
λ∈Zp

|||λ− Tλ− G f |||. (31)

We observe that (31) corresponds to the minimum residual formulation of the port problem (28); we have indeed

|||λ− Tλ− G f ||| = sup
v∈U

⟨λ− Tλ− G f, v⟩
|||v|||

= sup
v∈U

ap(λ, v) − fp(v)
|||v|||

.

Recalling the result in [56], we thus have⏐⏐⏐⏐⏐⏐λ⋆ − λ̃
⏐⏐⏐⏐⏐⏐ ≤

γp

αp
inf
λ∈Zp

⏐⏐⏐⏐⏐⏐λ⋆ − λ
⏐⏐⏐⏐⏐⏐, (32)

which proves the quasi-optimality of the OS2 statement with perfect local operators (31).
To estimate the error

⏐⏐⏐⏐⏐⏐̂λ− λ̃
⏐⏐⏐⏐⏐⏐, we resort to a perturbation analysis. We denote by α̂p and γ̂p the stability and

continuity constants associated with the problem (30): it is possible to resort to a perturbation analysis to estimate
these constants; since the argument is completely standard, we omit the details. We define the quantities εT and εG

as follows:

εT := sup

⏐⏐⏐⏐⏐⏐(T − T̂ )ψ
⏐⏐⏐⏐⏐⏐
, εG :=

⏐⏐⏐⏐⏐⏐(G − Ĝ) f
⏐⏐⏐⏐⏐⏐. (33)
ψ∈Zp |||ψ |||
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Then, it is possible to show that⏐⏐⏐⏐⏐⏐̃λ− λ̂
⏐⏐⏐⏐⏐⏐ ≤

1
α2

p

(
M
(
γp + γ̂p

) ⏐⏐⏐⏐⏐⏐Ĝ f
⏐⏐⏐⏐⏐⏐

α̂p
εT +

√
M
(
γ̂pεG +

⏐⏐⏐⏐⏐⏐Ĝ f
⏐⏐⏐⏐⏐⏐εT

))
. (34)

We postpone the proof of (34) to Appendix B.
By combining (34) with (32), we obtain the following result. We observe that (35) is the sum of two terms: the

first term is associated with the approximation properties of the port space, while the second term is directly linked
to the accuracy of the local solution operators.

Proposition 3. Let γp, αp be the continuity and stability constants of the form ap and let γ̂p, α̂p be the continuity
and stability constants of the form âp(λ, v) = ⟨λ− T̂λ , v⟩. Given the M-dimensional space Zp

⊂ U , we have⏐⏐⏐⏐⏐⏐λ⋆ − λ̂
⏐⏐⏐⏐⏐⏐ ≤

1
αp

(
γp inf

λ∈Zp

⏐⏐⏐⏐⏐⏐λ⋆ − λ
⏐⏐⏐⏐⏐⏐ +

1
αp

(
M
(
γp + γ̂p

) ⏐⏐⏐⏐⏐⏐Ĝ f
⏐⏐⏐⏐⏐⏐

α̂p
εT +

√
M
(
γ̂pεG +

⏐⏐⏐⏐⏐⏐Ĝ f
⏐⏐⏐⏐⏐⏐εT

)))
. (35)

4.4. Alternative variational interpretation of the OS2 statement

Following [16], we might also consider the alternative variational framework of the OS limit formulation (see
also [51, Chapter 1.5.2]): find (ub

1, up
1, ub

2, up
2) ∈

⨂2
i=1 Xi,0 × Ui such that{

a
(
ub

i + Ei u
p
i , vi

)
= f (vi ) ∀ vi ∈ Xi,0, i = 1, 2;(

up
1 − χΓ1

(
ub

2 + E2up
2

)
, ψ1

)
H1/2(Γ1) +

(
up

2 − χΓ2

(
ub

1 + E1up
1

)
, ψ2

)
H1/2(Γ2) = 0 ∀ψ = (ψ1, ψ2) ∈ U;

(36)

here E1, E2 are the extension operators, ub
1, ub

2 are the bubble solutions and up
1, up

2 are the port solutions. Given
he reduced spaces Zb

i ⊂ Xi,0 and Zp
i ⊂ Ui , and the approximate port-to-bubble maps F̂i = T̂i + Ĝ i f − Ei , for

= 1, 2, the reduced-order OS2 formulation can be stated as follows: find (̂ub
1, ûp

1, ûb
2, ûp

2) ∈
⨂2

i=1 Zb
i × Zp

i such
hat {

a
(̂
ub

i + Ei û
p
i , vi

)
= f (vi ) ∀ vi ∈ Zb

i , i = 1, 2;(̂
up

1 − χΓ1

(̂
ub

2 + E2ûp
2

)
, ψ1

)
H1/2(Γ1) +

(̂
up

2 − χΓ2

(̂
ub

1 + E1ûp
1

)
, ψ2

)
H1/2(Γ2) = 0 ∀ψ = (ψ1, ψ2) ∈ Z̃p

;

(37a)

where Z̃p
⊂ U is the M-dimensional space given by

Z̃p
=
{(
ζ

p
1 − χΓ1 T̂2(ζ p

2 ), ζ p
2 − χΓ2 T̂1(ζ p

1 )
)

: ζ
p
i ∈ Zp

i , i = 1, 2
}
, (37b)

nd T̂iζ satisfies T̂iζ = ub(ζ ) + Eiζ with ub
i (ζ ) ∈ Zb

i and a(ub
i (ζ ) + Eiζ, v) = 0 for all v ∈ Zb

i .
The proof of (37) is straightforward, and it is provided for completeness in Appendix B. Note that the OS2

tatement reads as a Petrov–Galerkin projection of (36) for a suitable choice of the test space Z̃p. We envision that
37) could be exploited to devise an alternative error analysis for the OS2 statement. We do not address this issue
n the present work.

.5. Explicit convergence rates for two one-dimensional model problems

Given Ω = (−1, 1) and the partition Ω1 = (−1, δ), Ω2 = (−δ, 1), we study the convergence of (multiplicative)
S and OS2 for the problems{

u′′
= 2 in Ω ,

u(−1) = u(1) = 1;
(38a)

nd {
−u′′

+ γ u′
= 0 in Ω ,

(38b)
u(−1) = 0, u(1) = 1;

17
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in the limit |δ| ≪ 1.
The analysis can be readily extended to the additive OS method.
For OS2, we resort to the gradient descent method with optimal choice of the step size, and to the Gauss–Newton

method (OS2-GN)—the choice of the gradient descent method is intended to simplify calculations (compared to
quasi-Newton methods). The motivation of this analysis is twofold: first, we show that the use of gradient-based
methods – as opposed to Gauss–Newton – is increasingly sub-optimal as δ → 0; second, we provide explicit
stimates for the constants αp and γp of Proposition 2 for two representative model problems.

We denote by ûi the approximation of the solution in Ωi for i = 1, 2; we define β1 = û1(δ) and β2 = û2(−δ).
e can show that OS and OS2 iterations can be written as

β (k)
= Pos

δ β
(k−1)

+ Fos
δ , β (k)

= Pos2
δ β (k−1)

+ Fos2
δ ,

or k = 1, 2, . . . and suitable choices of
(
Pos
δ ,Fos

δ

)
and

(
Pos2
δ ,Fos2

δ

)
. On the other hand, since the problems are linear,

OS2-GN reduces to a direct method and can be stated as

Aδβ = Fδ

for suitable choices of
(
Aδ,Fδ

)
.

In Appendix B, we show that the spectral radii ρos
δ and ρos2

δ of the transition matrices Pos
δ and Pos2

δ satisfy

ρos
δ ∼ 1 − 4δ, ρos2

δ ∼ 1 − 4δ2 for (38a);

ρos
δ ∼ 1 − 2

eγ + 1
eγ − 1

γ δ, ρos2
δ ∼ 1 −

eγ + 2
8(eγ − 1)

γ 2δ2 for (38b);
(39a)

hile the condition number of the linear system associated to OS2-GN satisfies

cond (Aδ) =
1
δ
, for (38a);

cond (Aδ) ∼
4(eγ − 1)

4(eγ + 2)γ
δ−1 for (38b);

(39b)

nd the constants αp and γp defined in Proposition 2 satisfy

αp =
2δ

1 + δ
, γp =

2
1 + δ

, for (38a);

αp ∼
4(eγ + 2)γ δ

2(eγ − 1)
, γp ∼ 2, for (38b);

(39c)

s expected, OS, OS2 and OS2-GN become increasingly ill-conditioned as δ decreases to zero and do not converge
or δ = 0; however, we observe that for small values of δ OS exhibits significantly faster convergence rates than
S2 based on the gradient-descent method: this observation further strengthens the importance of exploiting the

east-square structure of the OS2 statement.

. Numerical results

.1. Assessment metrics and training parameters

We train the CB-ROM based on ntrain = 70 global parameters Ξtrain = {µ(k)
}

ntrain
k=1 such that

(E (k)
1 , E (k)

2 , E (k)
3 , s(k))

iid
∼ Uniform

(
[25, 30] × [10, 20]2

× [0.4, 1]
)
, Q(k)

a
iid
∼ Uniform ({2, . . . , 7}) ;

on the other hand, we assess performance based on ntest = 20 out-of-sample global parameters Ξtest = {µ̃( j)
}

ntest
j=1

generated using the same distribution. In view of the assessment, we also define the PoU {φi }
Ndd
i=1 ⊂ Lip(Ω;R)

associated with the partition {Ωi }
Ndd
i=1 such that

Ndd∑
φi (x) = 1,

{
0 ≤ φi (x) ≤ 1 ∀ x ∈ Ω ,

φ (x) = 0 ∀ x /∈ Ω ,
i = 1, . . . , Ndd.
i=1 i i

18



A. Iollo, G. Sambataro and T. Taddei Computer Methods in Applied Mechanics and Engineering 404 (2023) 115786

N
t

w
d

p
l
l

n

5

p
s

p
e

n
a
n
t

m

a
s
f
d
o
F

Given u ∈ X :=
⨂Ndd

i=1 Xi , we define the PoU operator

Ppu[u] :=

Ndd∑
i=1

φi ui ∈ H 1(Ω ). (40)

ote that we omit the dependence of {φi }i and also Ndd on the parameter to shorten notation. Finally, we define
he out-of-sample average and maximum prediction errors

Eavg :=
1

ntest

∑
µ∈Ξtest

∥Ppu[uhf
µ ] − Ppu [̂uµ]∥H1(Ω)

∥Ppu[uhf
µ ]∥H1(Ω)

, (41a)

Emax := max
µ∈Ξtest

∥Ppu[uhf
µ ] − Ppu [̂uµ]∥H1(Ω)

∥Ppu[uhf
µ ]∥H1(Ω)

. (41b)

As mentioned in Section 3, we here resort to the HF CB solver to generate HF data for training and test, to
simplify interpretation of the numerical results. In several figures, we compare the prediction error (41a) with the
error associated with the mapped H 1(Ω a

Li
) projection of uhf

µ ◦ Φi , for i = 1, . . . , Ndd,

Eopt
avg :=

1
ntest

∑
µ∈Ξtest

∥Ppu[uhf
µ ] − Ppu [̂uopt

µ ]∥H1(Ω)

∥Ppu[uhf
µ ]∥H1(Ω)

, with
(̂
uopt
µ

)
i
=

(
ΠZa,b

Li
∪Wa,p

Li
uhf
µ ◦ Φi

)
◦ Φ−1

i , (42)

for i = 1, . . . , Ndd. Note that (42) is not optimal – that is, it is not the relative H 1(Ω ) projection error associated
ith the instantiated spaces – but it can be shown to be quasi-optimal exploiting [37, Theorem 1]. We omit the
etails.

We resort to a P2 FE discretization with N e
int = 1120 and N e

ext = 3960 elements, and N p
int = 272 and N p

ext = 200
ort quadrature points. We emphasize that the HF component-based discretization is constructed to ensure that the
ocal grids match exactly for Qa = Qref (cf. Fig. 3); however, we remark that internal and external meshes do not
ead to a global conforming discretization for any other value of Qa.

All simulations are performed in Matlab 2020b on a commodity laptop. The implementation of the method does
ot resort to any parallelization of offline and online solves.

.2. Reduced-order model with HF quadrature

We show the performance of the OS2 ROM without hyper-reduction. First, we show the behavior of the
ercentage of retained energy of the POD eigenvalues {λi }i of the Gramian matrix associated with the snapshot
et. To facilitate visualization, we show the average in-sample error En = 1 −

∑n
i=1 λi∑ntrain

j=1 λ j
for several values of n, for

ort and bubble components, and for the two archetype components. We observe that the POD eigenvalues decay
xtremely rapidly, for both components (see Fig. 5).

In Fig. 6, we compare the average error Eavg (41a) associated with the OS2 ROM for several values of m and
= m and n = 2 m, with the average error Eopt

avg (42) obtained through projection. We observe that the OS2 ROM
chieves near-optimal performance for all choices of the port and bubble ROBs. We also observe that doubling the
umber of port modes m by keeping the same number of bubble modes n does not lead to relevant differences in
erms of both projection and OS2 prediction error. In the remainder, we set m = n.

Fig. 7 shows the behavior of the solution over a vertical slice of the domain for a test configuration with
Qa = 7; boundaries of the Qa internal subdomains associated with repositories and the external subdomain are

arked as black dots in 7(a); the vertical slice, drawn as a purple dashed line, corresponds to points (x, y) such that
x = x̄ = 0.43, 0 ≤ y ≤ 1. Points of the slice belong to either the instantiated component Ω3 or Ω8 (or both). We
pply the partition of unity operator (40) to generate globally-defined solutions. We compute therefore approximate
olutions Ppu[û(n=2)

⋆ ] Ppu[û(n=10)
⋆ ] corresponding to two choices of the ROB size n = m = 2 and n = m = 10 and

or subscript ⋆ corresponding to x and y components; we also compare the reduced solutions with the HF globally
efined solutions Ppu[uhf

⋆ ]. We observe that the choice n = m = 2 enables qualitatively accurate approximations
f the vertical displacement (cf. 7(c)), but extremely inaccurate approximations of the horizontal displacement (cf.

ig. 7(b)), while the choice n = m = 10 leads to accurate predictions for both horizontal and vertical displacements.
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Fig. 5. Behavior of the average squared in-sample error En = 1 −

∑n
i=1 λi∑ntrain

j=1 λ j
for several values of n, for port and bubble components, and

or the two archetype components.

Fig. 6. Out-of-sample performance of OS2 ROM without hyper-reduction for several values of m, with n = m and n = 2 m; comparison
with optimal (“opt”) average error Eopt

avg (42).

5.3. Hyper-reduction of the port-to-bubble maps

Fig. 8 investigates performance of the EQ rule for different tolerances toleq (cf. Appendix A): Fig. 8(a) and
(b) show the behavior of the out-of-sample relative error compared to the OS2 ROM with HF quadrature (dubbed
HFQ); in Fig. 8(a) we depict Eavg, in Fig. 8(b) we depict Emax. Fig. 8(c) and (d) show the percentage of sampled
lements as a function of m, for the two archetype components and for several tolerances. We observe that for
oleq ≤ 10−10 the hyper-reduced OS2 ROM is as accurate as the OS2 ROM with HF quadrature for all values of

considered. We further observe that the percentage of sampled elements is between three and five times larger
n the internal component—since N e

ext ≈ 3.5N e
int, we have that the absolute number of sampled elements is nearly

he same for the two components.

.4. Hyper-reduction of the objective function

In Fig. 9, we show the behavior of the L∞ error

E∞

avg,eim(ℓ,m) :=
1

ntrain,ℓ

ntrain,ℓ∑
k=1

up
ℓ,k − Iℓ,m[u p

k ]


∞

where {up
ℓ,k}

ntrain,ℓ
k=1 are the port fields associated with the ℓth component and employed to generate the port basis

∞
cf. Algorithm 2). We observe near-exponential convergence of the L error for both components; interestingly,
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Fig. 7. Visualization of the horizontal and vertical displacement components for a vertical slice. (For interpretation of the references to
olor in this figure legend, the reader is referred to the web version of this article.)

he interpolation error for the internal component is one order of magnitude larger than the error for the external
omponent.

In Fig. 10, we report the percentage of sampled quadrature points by the two hyper-reduction procedures. By
onstruction, EIM selects mp,eq = m points; on the other hand, the number of points selected by the EQ procedure
f Section 3.3.1 weakly depends on the size m of the port basis.

In Fig. 11, we investigate the performance of the fully hyper-reduced ROM: Fig. 11(a) shows the behavior of
he prediction error (41a), while Fig. 11(b) shows the behavior of the maximum wall-clock time over the test set.

e observe that the speed-up due to hyper-reduction of the objective function is of the order 1.5 for all choices of
; on the other hand, performance of the two considered hyper-reduction strategies is comparable for all tests. In
ig. 11(c) the out-of-sample error distributions are depicted in the case without hyper-reduction on the objective
unction for different values of m.

In Fig. 12 we show the speed-up factor of the hyper-reduced OS2 solvers with respect to a representative
onolithic HF solver of comparable accuracy for different numbers of subdomains. The monolithic P2 FE solver

uns in approximately3 2.7806 [s] for Ndd = 2 and in 9.9971 [s] for Ndd = 8; the CB HF solver (10) that is used to
enerate training and test data is roughly a factor three slower than the corresponding monolithic solver. We define
he speed-up factor as:

speed-up(Ndd) :=
thf(Ndd)

tOS2(Ndd)

3 Computational times are based on an average over 5 tests for each number of subdomains; the computational grid has 17 177 FE nodes
for N = 2 and it has 38 637 nodes for N = 8.
dd dd
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Fig. 8. Hyper-reduction of the port-to-bubble maps for several tolerances toleq and port space sizes m, with n = m. Behavior of the (a)
average, (b) max out-of-sample prediction. (c)–(d) percentage of sampled elements in Ω a

int and Ω a
ext.

Fig. 9. Application of the EIM procedure for vector-valued fields (cf. Algorithm 3). (a)–(b) behavior of the in-sample L∞ approximation
error E∞

avg,eim for the internal and the external component.

where thf is the estimated execution time of the monolithic HF solver averaged over 5 tests and tOS2 is the execution
time associated with the CB ROM, averaged over the same 5 configurations, for Ndd ∈ {3, . . . , 8}. We perform hyper-
reduction of the port-to-bubble maps using the tolerance toleq = 10−10 and we consider the tolerances toleq,p = 10−4

and toleq,p = 10−6 for the hyper-reduction of the objective function (for the EQ+EQ case).
We observe that the speed-up factors depicted in Fig. 12 depend weakly on the number of subdomains. The EIM

method leads to slightly larger speed-ups than the EQ method for m = n = 16 (cf. Fig. 12(b)), while performance
is comparable for the case m = n = 8 (Fig. 12(a)). We envision that more effective implementations of Algorithm
1 — which rely on parallelization of the port-to-bubble loop at Lines 4–7 and on pointwise EQ hyper-reduction of

the port-to-bubble maps, as opposed to element-wise EQ — will lead to significantly larger speed-ups.
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Fig. 10. Hyper-reduction of the objective function for internal and external archetype components, with respect to m, with n = m. (a)
percentage of sampled quadrature points based on EIM. (b)–(c) percentage of sampled quadrature points based on the EQ procedure, for
two tolerances toleq,p.

Fig. 11. Hyper-reduction of the objective function based on EIM and EQ. (a) worst out-of-sample performance of the hyper-reduced OS2
ROM for several choices of m, with n = m. (b) maximum computational cost over the test set. (c) Out-of-sample error distributions for
the EQ+HFQ case. Results are based on the EQ tolerance toleq = 10−10 for the local problems and the tolerances toleq,p = 10−4 and
toleq,p = 10−6 for the objective function (for EQ+EQ).

5.5. Optimization strategy: comparison between Gauss–Newton, quasi-Newton and overlapping Schwarz

We compare the performance of the Gauss–Newton method and the quasi-Newton method discussed in
Section 2.5 for various choices of m and n = m; to provide a concrete reference, we also consider the multiplicative
overlapping Schwarz method with Dirichlet interface conditions. More precisely, we implement the iterative
procedure described in Algorithm 4: note that the OS method simply requires the solution to a sequence of problems
23
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Fig. 12. Speed-up of the OS2 ROMs with respect to the HF monolithic solver for several values of the number of subdomains. (a)
performance for m = 8; (b) performance for m = 16. EQ tolerance for the port-to-bubble maps is set equal to toleq = 10−10.

on the subdomains with information propagating through the boundary conditions; since the discretization is not
conforming across components, we should define the i th port mode using projection (cf. Line 5, Algorithm 4). Note
that at step i of the for loop at Lines 4−7 we use the values of β̂ i , . . . , β̂Ndd

at the previous iteration and the values
β1, . . . , β̂ i−1 at the current iteration: the for loop is thus not parallelizable. We set tol = 10−6 in Algorithm 1 (cf.
Line 11) and we consider the same termination criterion for the quasi-Newton solver and the OS solver. In this
test, we perform hyper-reduction at the local level (EQ tolerance 10−10), but we do not hyper-reduce the objective
function.

Algorithm 4 Overlapping Schwarz method.

Inputs: α(0)
= [α(0)

1 , . . . ,α
(0)
Ndd

], β(0)
= [β(0)

1 , . . . ,β
(0)
Ndd

] initial conditions (cf. Eq. (20)), tol > 0, maxit.

utputs: β̂ port coefficients, α̂ = F̂
eq(β̂) bubble coefficients.

1: Set β̂
(0)

= β (0) and α̂ = α(0).

2: for k = 1, . . . , maxit do
3: Initialize α̂(k)

= α̂(k−1) and β̂
(k)

= β̂
(k−1)

.

4: for i = 1, . . . , Ndd do
5: Update β̂

(k)
i ∈ arg minβ∈Rm

∑
j∈Neighi

∥W p
i β − Zb

j F̂
eq
j (β̂

(k)
j ) − W p

j β̂
(k)
j ∥

2
L2(Γi, j )

.

6: Update α̂(k)
i = F̂

eq
i (β̂

(k)
i ).

7: end for
8: if ∥β̂

(k)
− β̂

(k−1)
∥2 < tol∥β̂

(k)
∥2 then, BREAK

9: end if
10: end for

Fig. 13(a) shows the behavior of the objective function in (15) with respect to the ROB sizes over the test set,
hile Fig. 13(b) shows the number of iterations required to meet the termination criterion: we observe that GNM

equires many fewer iterations without any deterioration in accuracy. Fig. 13(c) shows the wall-clock average cost
or the three methods: even if GNM has a slightly larger per-iteration cost, we empirically find that OS2 with GNM
s significantly more rapid than the other two approaches. Furthermore, since the OS internal loop (cf. Lines 4–7
lgorithm 4) is not parallelizable as opposed to the corresponding loop of the OS2 solver (cf. Lines 4–7 Algorithm

), we expect significantly larger computational gains if we resort to parallel computing.
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c

Fig. 13. Comparison between OS2 with Gauss–Newton optimization and with quasi-Newton optimization, and multiplicative overlapping
Schwarz methods. (a) average value of the objective function with respect to m and for n = m. (b) maximum number of iterations to meet
the convergence criterion. (c) average wall-clock cost with respect to m and for n = m.

Fig. 14. Comparison between Gauss–Newton, quasi-Newton methods, and multiplicative overlapping Schwarz methods with zero initial
ondition. (a) average value of the objective function with respect to m and for n = m. (b) maximum number of iterations to meet the

convergence criterion. (c) average wall-clock cost with respect to m and for n = m.

In Fig. 14, we repeat the test of Fig. 13 for the choice of the initial conditions α(0)
= 0 and β (0)

= 0 in Algorithm
1 and Algorithm 4. We observe that OS and OS2 with GNM show similar performance with respect to all metrics,
while OS2 with QN, instead of converging to the optimal solution, converges to a different local minimum for two
configurations for m = 6.

6. Conclusions

In this work we developed and numerically validated the one-shot overlapping Schwarz (OS2) approach
to component-based MOR of steady nonlinear PDEs. The key features of the approach are (i) a constrained
optimization statement that penalizes the jump at the components’ interfaces subject to the approximate satisfaction
of the PDE in each deployed (instantiated) component; (ii) the decomposition of the local solutions into a port
component – associated with the solution on interior boundaries (ports) – and a bubble component that vanishes at
ports, to enable effective parallelization of the online solver. Hyper-reduction of the local sub-problems and of the
objective function is performed to reduce online assembly costs. We illustrate the many elements of the formulation
through the application to a two-dimensional nonlinear mechanics (Neo-Hookean) PDE model; for this problem, we
are able to devise a CB-ROM that reduces online costs by a factor 20 compared to a standard monolithic FE model
with less than 0.1% prediction error, and without resorting to any parallelization of the online ROM solver. We also
observe that for the particular model problem considered in this paper the OS2 formulation provides acceptable
results also for under-resolved ROBs.

We aim to extend our approach in several directions. First, we wish to apply the OS2 method to more challenging

problems in nonlinear mechanics, with particular emphasis on thermo-hydro-mechanical (THM) systems [39]:
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towards this end, we should extend the OS2 formulation to unsteady PDEs and we should also devise specialized
routines to deal with internal variables. In this respect, we envision to combine our approach with the recently-
developed OS method discussed in [57–59]. Second, we wish to devise localized training techniques to avoid
the solution to global HF problems at training stage: in this regard, we aim to extend the approach in [7] to
unsteady PDEs with internal variables. Third, we aim to combine data-fitted and projection-based ROMs in the
OS2 framework: we envision that the successful combination of first-principle and data-fitted models might offer
new solutions for data assimilation (state estimation) applications, for a broad range of engineering tasks. Fourth,
we wish to investigate the possibility of generalizing our approach to non-overlapping decompositions: this requires
to add in the objective function a term that penalizes the jump of the normal stresses; a deep investigation of the
connection with discontinuous Galerkin methods should also be considered.
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ppendix A. Hyper-reduction of port-to-bubble problems

We review the element-wise EQ hyper-reduction procedure that is employed here to speed up the solution to the
ort-to-bubble problems. The approach exploits the methods first proposed in [13,14]: we refer to [38] for further
etails. We recall that, for any ℓ ∈ L, {xa,v

ℓ, j }
N v
ℓ

j=1 are the nodes of the reference mesh of the ℓth component, while
Tℓ ∈ NN e

ℓ
×nlp is the connectivity matrix, with nlp equal to the number of elemental degrees of freedom. We denote

by e1, . . . , eD the vectors of the canonical basis in RD and we denote by ϕℓ,k,i the FE basis associated with the i th
degree of freedom of the kth element of the ℓth component.

Given u ∈ X a
ℓ , we denote by uun

∈ Rnlp×N e
ℓ
×D the corresponding third-order tensor such that

uun
i,k,d =

(
u
(

xa,v
ℓ,Tℓ,k,i

))
d
, i = 1, . . . , nlp, k = 1, . . . , N e

ℓ , d = 1, . . . , D.

imilarly, given the ROB basis Z a,b
ℓ : Rn

→ Za,b
ℓ , we denote by Za,b,un

ℓ ∈ Rnlp×N e
ℓ
×D×n the corresponding

ourth-order tensor. We further define the unassembled residual associated with the field u and the parameter µℓ,

Ra,un
ℓ,i,k,d (u;µℓ) :=

∫
Dℓ,k

η
a,e
ℓ (u, ϕℓ,k,i ed;µℓ) dx +

∫
∂Dℓ,k

η
a,f
ℓ (u, ϕℓ,k,i ed;µℓ) dx,

for ℓ ∈ L, i = 1, . . . , nlp, k = 1, . . . , N e
ℓ , d = 1, . . . , D. Then, it is easy to verify that(

R̂⋆
ℓ(γ ℓ)

)
j =

∑
i,k,d

ρ⋆ℓ,k Z a,b,un
ℓ,i,k,d, j Ra,un

ℓ,i,k,d (γ ℓ) =
(
Ga
ℓ(γ ℓ)ρ

⋆
ℓ

)
j , j = 1, . . . , n, (A.1a)

where ⋆ ∈ {hf, eq}, γ ℓ = (αℓ,βℓ, µℓ) denotes the triplet of bubble coefficients, port coefficients and parameter,
Ga
ℓ : Rn

× Rm
× Pℓ → Rn×N e

ℓ is the matrix-valued function that satisfies
(
Ga
ℓ(γ ℓ)

)
j,k =

∑
i,d Z a,b,un

ℓ,i,k,d, j Ra,un
ℓ,i,k,d (γ ℓ)

for j = 1, . . . , n and k = 1, . . . , N e
ℓ . The latter identity implies thatˆhf ˆeq a ( hf eq)
Rℓ (γ ℓ) − Rℓ (γ ℓ) = Gℓ(γ ℓ) ρℓ − ρℓ (A.1b)
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For any ℓ ∈ L, EQ procedures aim to find a vector ρeq
ℓ ∈ RN e

ℓ such that (i) ρeq
ℓ is as sparse as possible; (ii) the

onstant function is integrated accurately, that is

⏐⏐ N e
ℓ∑

k=1

ρ
eq
ℓ,k |Dℓ,k | − |Ω a

ℓ |
⏐⏐ ≪ 1; (A.2)

iii) given the training set of triplets Σ
train,eq
ℓ := {γ

( j)
ℓ }

ntrain,ℓ
j=1 , the residual is adequately calculated for all elements

f the training set,⏐⏐Jb
ℓ

(
γ ℓ
)−1 (R̂hf

ℓ (γ ℓ) − R̂eq
ℓ (γ ℓ)

) ⏐⏐ ≪ 1, where Jb
ℓ := ∂αR̂hf

ℓ , ∀ γ ℓ ∈ Σ
train,eq
ℓ . (A.3)

s discussed in Section 3 (cf. (22)), the constant accuracy constraint (A.2) is designed to control the ℓ1 norm of the
eights that is related to the stability of the quadrature rule (see, e.g., [60, section 2.3]); the constraints (A.3) are
irectly linked to the approximation error between the ROM estimate with HF quadrature and the hyper-reduced
OM estimate (cf. [14, Proposition 3.2]).

We observe that the EQ problem can be recast as a sparse representation problem of the form

min
ρ∈RNe

ℓ

∥ρ∥ℓ0 , s.t. ∥Ceq
ℓ

(
ρhf
ℓ − ρ

eq
ℓ

)
∥2 ≤ toleq, (A.4)

here ∥ρ∥ℓ0 is the ℓ0 norm that counts the number of non-zero entries in the vector ρ, Ceq
ℓ is a suitable matrix that

an be readily derived from (A.2) and (A.3), and toleq is a suitable tolerance. Problem (A.4) is NP hard; however,
everal effective approximate strategies have been proposed in the literature to determine parsimonious quadrature
ules for MOR applications, [13,14,61,62]. In this work, we resort to the non-negative least-square algorithm
mplemented in the Matlab routine lsqnonneg, which takes as input the matrix Ceq

ℓ , the vector beq
ℓ := Ceq

ℓ ρ
hf
ℓ

nd the tolerance toleq, and returns the sparse quadrature rule.

ppendix B. Proofs

.1. Proof of Proposition 1

roof. Let u⋆ be the solution to (24). Then, we find

a(u⋆|Ωi , v)
(25)
= a(u⋆, vext) = f (vext) = f (v) ∀ v ∈ Xi,0;

herefore, u⋆|Ωi = Ti u⋆|Γi + G i f . The latter implies that λ⋆ =
(
u⋆|Γ1 , u⋆|Γ2

)
satisfies

λ⋆ − Eλ⋆ − G f =
(
u⋆|Γ1 − u⋆|Γ1 , u⋆|Γ2 − u⋆|Γ2

)
= 0,

nd thus that λ⋆ solves (28).
Let λ⋆ satisfy (28). We define u⋆i = Tiλ

⋆
i + G i f for i = 1, 2. If we define the space X 0

1,2 = {v|Ω1∩Ω2 : v ∈

, v|Γ1∪Γ2 = 0}, we observe that u⋆1, u⋆2 satisfy

u⋆i |Γ1 = λ⋆1, u⋆i |Γ2 = λ⋆2, a(u⋆i , v) = f (v) ∀ v ∈ X 0
1,2, i = 1, 2. (B.1)

ince a : X 0
1,2 ×X 0

1,2 → R is coercive, the solution to (B.1) exists and is unique: therefore, u⋆1 = u⋆2 in Ω1 ∩Ω2. In
articular, if we define u⋆ =

∑2
i=1 u⋆i , we have u⋆|Ωi = u⋆i for i = 1, 2.

Given v ∈ X , we have vφi ∈ Xi,0, since, by construction, suppφi ⊂ Ω i . We thus have

a(u⋆, v) =

∑
i=1

a(u⋆, φiv) =

∑
i=1

a(u⋆
⏐⏐
Ωi , φiv) =

∑
i=1

a(u⋆i , φiv) =

∑
i=1

f (φiv) = f (v),

hich is the desired result. □
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B.2. Proof of Proposition 2

Proof. Continuity of ap follows from the continuity of the trace operators, and the local operators T1, T2. We omit
he details. To prove inf-sup stability of the problem, we resort to the Fredholm’s alternative: since T is compact,

provided that ν = 1 is not an eigenvalue of T , the equation λ− Tλ = f admits a unique solution for any f ∈ U
and there exists a constant C such that |||λ||| ≤ C ||| f ||| (see, e.g., [63, Theorem 6.6.8]). It thus suffices to prove that
Tλ = λ only holds for λ = 0.

Towards this end, we consider the problem:

find w ∈ X1,2 : a(w, v) = 0 ∀ v ∈ X 0
1,2, w|Γ1 = γ1, w|Γ2 = γ2,

with X 0
1,2 = {v|Ω1∩Ω2 : v ∈ X }, and X 0

1,2 = {v|Ω1∩Ω2 : v ∈ X , v|Γ1∪Γ2 = 0}. Since T1λ1 = λ1 on Γ1 by
definition and T1λ1 = λ2 on Γ2 since Tλ = λ, we have that T1λ1|Ω1,2 = w; similarly, we find T2λ2|Ω1,2 = w.
As observed in the proof of Proposition 1, there exists a unique solution to the problem w ∈ X1,2: this implies
hat T1λ1|Ω1,2 = T2λ2|Ω1,2 . Given the partition of unity φ1, φ2 associated with {Ωi }

2
i=1, we define the field

=
∑2

i=1 φi Tiλi ∈ X , which satisfies u|Ωi = Tiλi for i = 1, 2. We observe that

a(u, v) =

2∑
i=1

a (u, φiv)
(25)
=

2∑
i=1

a
(
u|Ωi , φiv

)
=

2∑
i=1

a (Tiλi , φiv) = 0.

ince a is coercive, we must have u ≡ 0 and thus λ ≡ 0. □

.3. Proofs of the estimate (34)

roof. We first introduce the orthonormal basis {ψi }
M
i=1 of Zp; given λ ∈ Zp, we denote by λ ∈ RM the

orresponding vector of coefficients such that λ =
∑M

i=1(λ)iψi . By straightforward calculations, we find that

Ã λ̃ = F̃, Â λ̂ = F̂, with

{(
Ã
)

i, j = ⟨(I d − T )ψ j , (I d − T )ψi ⟩,
(̃
F
)

i = ⟨(I d − T )ψi ,G f ⟩,(
Â
)

i, j = ⟨(I d − T̂ )ψ j , (I d − T̂ )ψi ⟩,
(̂
F
)

i = ⟨(I d − T̂ )ψi , Ĝ f ⟩.
(B.2)

y straightforward calculations, we obtain

λ̃− λ̂ = Ã−1 (̃F − F̂ −
(
Ã − Â

)
λ̂
)

nd thus

∥̃λ− λ̂∥2 ≤ ∥Ã−1
∥2  

=:(I)

(
∥Ã − Â∥2  

=:(II)

∥̂λ∥2
=:(III)

+ ∥F̃ − F̂∥2  
=:(IV)

)
. (B.3)

We estimate each term of (B.3) independently: combination of the estimates for (I)-(IV) leads to (34).

(I) Recalling the definition of αp, we have |||ψ − Tψ ||| ≥ αp|||ψ |||; therefore, we have

ψT Ãψ = |||ψ − Tψ |||
2

≥ α2
p |||ψ |||

2
= α2

p∥ψ∥
2
2,

which implies (I).
(II) By summing and subtracting ⟨(I d − T )ψ j , (I d − T̂ )ψi ⟩ to

⏐⏐ (Ã)i, j −
(
Â
)

i, j

⏐⏐ and recalling the definitions of
γp, γ̂p and εT, we obtain⏐⏐ (Ã)i, j −

(
Â
)

i, j

⏐⏐ ≤
(
γp + γ̂p

)
εT, ∀ i, j = 1, . . . ,M.

Estimate (II) then follows by exploiting the fact that for any M × M matrix A, we have ∥A∥2 ≤

M maxi, j |Ai, j |.
(III) Estimate (III) follows directly from the properties of minimum residual formulations of inf-sup stable

problems. Indeed, since the bilinear form ap is continuous and inf-sup stable, using the Nečas theorem (see,
e.g., [63, Thm 6.42]) we have ∥̂λ∥2 =

⏐⏐⏐⏐⏐⏐̂λ⏐⏐⏐⏐⏐⏐ ≤
1
α̂p

⏐⏐⏐⏐⏐⏐Ĝ f
⏐⏐⏐⏐⏐⏐ for all f ∈ X ′.

(IV) Proceeding as in (II), we find⏐⏐ (̃F)i −
(̂
F
)

i

⏐⏐ ≤ γ̂pεG + |||G f |||εT, ∀ i = 1, . . . ,M,

and thus ∥F̃ − F̂∥ ≤
√

M∥F̃ − F̂∥ ≤
√

M
(
γ̂ ε + |||G f |||ε

)
. □
2 ∞ p G T
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B.4. Proof of (37)

Proof. For the two-subdomain problem, the OS2 statement (30) can be stated as:

min
(ψ1,ψ2)∈Zp

1 ×Zp
2

∥û1(ψ1) − û2(ψ2)∥H1/2(Γ1∪Γ2) (B.4)

where ûi (ψi ) = ûb
i (ψi )+ Eiψi and ûb

i (ψi ) ∈ Zb
i satisfies a(̂ub

i (ψi )+ Eiψi , v) = f (v) for all v ∈ Zb
i and all ψi ∈ Zp

i ,
or i = 1, 2. If we differentiate (B.4), we obtain the optimality conditions(̂

up
1 − χΓ1

(̂
ub

2

(̂
up

2

)
+ E2ûp

2

)
, ψ1 − χΓ1

(̂
ub

2(ψ2) + E2ψ2
))

H1/2(Γ1)

+
(̂
up

2 − χΓ2

(̂
ub

1

(̂
up

1

)
+ E1ûp

1

)
, ψ2 − χΓ2

(̂
ub

1(ψ1) + E1ψ1
))

H1/2(Γ2) = 0 ∀ψ = (ψ1, ψ2) ∈ Zp
1 × Zp

2 ,

hich can rewritten as in (37). □

.5. Proofs of the estimates in Section 4.5

In the following, we use the Taylor expansions:

ex
∼ 1 + x + x2,

1
1 − x

∼ 1 + x + x2, (1 + x)1/2
∼ 1 +

1
2

x −
1
8

x2, (1 + x)2
∼ 1 + 2x, (B.5)

hich are valid for |x | ≪ 1. We further employ the identiy:

max {|1 − σλ1|, |1 − σλ2|} =

{
1 − σλ1 σ < 2

λ1+λ2

σλ2 − 1 σ ≥
2

λ1+λ2

(B.6)

that is valid for any 0 ≤ λ1 ≤ λ2.

B.5.1. Problem (38a)
It is easy to verify that the local solutions û1, û2 satisfy

û1(x, β) = x2
−

δ2

1 + δ
(1 + x) +

β

1 + δ
(1 + x), û2(x, β) = x2

−
δ2

1 + δ
(1 − x) +

β

1 + δ
(1 + x). (B.7)

y imposing β1 = û2(δ, β2) and β2 = û1(δ, β1) we obtain the system of equations:

Aδ β = Fδ, with Aδ =

[
1 −cδ
−cδ 1

]
, Fδ =

[
dδ
dδ

]
,

nd cδ =
1−δ
1+δ

, dδ =
2δ3

1+δ
. The matrix Aδ is symmetric with positive eigenvalues 1 − cδ and 1 + cδ; we thus have

cond (Aδ) =
1 + cδ
1 − cδ

=
1
δ
, αp = 1 − cδ =

2δ
1 + δ

, γp = 1 + cδ =
2

1 + δ
.

hich are (39b) and (39c).
Multiplicative OS corresponds to the application of the Gauss–Seidel iterative method to the linear system
δ β = Fδ . We thus find

β (k)
= Pos

δ β
(k−1)

+ Fos
δ , with Pos

δ =

[
0 cδ
0 c2

δ

]
, Fos

δ =

[
dδ
dδ + cδdδ

]
.

e can then verify that the spectral radius of Pos
δ is equal to

ρos
δ = c2

δ ∼ 1 − 4δ.

The OS2 method for (38a) reads as

min
β∈R2

1
2

∑
x∈{−δ,δ}

(̂u1(x, β1) − û2(x, β2))2 =
1
2
∥Aδ β − Fδ∥2

2. (B.8)

If we apply the gradient descent method to (B.8), we obtain
(k) ( T ) (k−1) T
β = 1− σAδ Aδ β + σAδ Fδ.
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By tedious calculations, we can verify that the eigenvalues of the transition matrix 1 − σAT
δ Aδ are equal to

− σ (cδ + 1)2 and 1 − σ (cδ − 1)2: recalling (B.6), we find that the spectral radius of the transition matrix is
inimized by σ =

1
c2
δ+1

and is equal to

ρos2
δ =

2cδ
c2
δ + 1

∼ 1 − 4δ2.

B.5.2. Problem (38b)
The local solutions û1, û2 satisfy

û1(x, β) = β
eγ x

− e−γ

eγ δ − e−γ
, û2(x, β) =

eγ x
− e−γ δ

eγ − e−γ δ
+ β

eγ − eγ x

eγ − e−γ δ
. (B.9)

Exploiting the Taylor expansions in (B.5), we obtain

û1(−δ, β) ∼ β
(
1 − 2cγ δ + 2c2

γ δ
2) , û2(δ, β) ∼ 2dγ δ − 2d2

γ δ
2

+ β
(
1 − 2dγ δ + 2d2

γ δ
2)

here cγ :=
γ

1−e−γ and dγ :=
cγ
eγ . We thus find the (approximate) system of equations

Aδ β = Fδ, with Aδ =

[
1

(
−1 + 2dγ δ − 2d2

γ δ
2
)(

−1 + 2cγ δ − 2c2
γ δ

2
)

1

]
, Fδ =

[
2dγ δ − 2d2

γ δ
2

0

]
.

herefore, the Gauss–Seidel transition matrix is approximately equal to

Pos
δ ∼

[
0 −1 + 2dγ δ

0 −
(
1 − 2dγ δ

) (
1 − 2cγ δ

)]
nd thus

ρos
δ ∼ 1 − 2

(
cγ + dγ

)
δ = 1 − 2

eγ + 1
eγ − 1

γ δ.

n the other hand, the eigenvalues of AT
δ Aδ are approximately equal to

λ1 ∼
(cγ + 2dγ )2

4
δ2, λ2 ∼ 4 − (2cγ + 4dγ )δ,

nd thus

αp =

√
λ1 ∼

4(eγ + 2)γ δ
2(eγ − 1)

, γp =

√
λ2 ∼ 2.

Exploiting (B.6), we find that the approximately optimal choice of the step size σ is equal to σ =
1
2

(
1 +

( cγ
2 + dγ

)
δ
)

and thus

ρos2
δ ∼ 1 − σλ1 ∼ 1 −

1
8

(
cγ + 2dγ

)2
δ2.

On the other hand, we obtain that the condition number of Aδ is given by

cond(Aδ) =

√
λmax(AT

δ Aδ)
λmin(AT

δ Aδ)
∼

√
4 − (2cγ + 4dγ )δ

(cγ+2dγ )
2 δ

∼
4

(cγ + 2dγ )δ
=

4(eγ − 1)
4(eγ + 2)γ δ
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