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Abstract. In this work we develop a component-based model order reduction (CB-pMOR)
procedure for a class of problems in nonlinear mechanics with internal variables. The work is
motivated by applications to thermo-hydro-mechanical (THM) systems for radioactive waste
disposal. The THM system is coupled, time-dependent, and highly nonlinear; furthermore,
the solution to the problem depends on several parameters, which might be related to the
geometric configuration (e.g. the number of repositories, their distance or their size) or the
material properties of the medium. We investigate the effectiveness of the proposed method in
terms of accuracy and computational costs for a two-dimensional THM system in the case of
overlapping partitions.

1 Introduction

Standard computational methods based on a high-fidelity (HF) discretization of parameter-
ized partial differential equation (PDEs) often require prohibitively large computational costs
to achieve sufficiently accurate numerical solutions for real-time and many-query applications
that naturally arise for a wide range of problems in science and engineering. To address this
issue, parametric model order reduction (pMOR) techniques build a low-dimensional model,
which requires short simulation times and low data storage, but still keeps the approximation
error between the reduced-order solution and the HF solution under control. The reduced basis
(RB, [4, 11]) method obtains a solution through the projection of the HF problem onto a small
subspace, which is constructed in a training stage for the specific problem at hand. Standard
pMOR techniques rely on HF solves at training stage, which might be unaffordable for very
large-scale problems; furthermore, standard pMOR techniques rely on the assumption that the
solution field is defined over a parameter-independent domain or over a family of diffeomor-
phic domains. The objective of this paper is to devise a component-based pMOR procedure for
large-scale problems in mechanics, with emphasis on thermo-hydro-mechanical (THM) systems.

We introduce the spatial variable x in the Lipschitz domain Ω ⊂ Rd with dimension d = 2, 3,
and the time variable t in the time interval (0, tf ] ⊂ R, where tf is the final time. We further
define the vector of parameters µ in the compact parameter region P ⊂ RP . Given a parameter
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µ ∈ P, we introduce the vector of D state (or primary) variables Uµ : Ω × (0, tf ] → RD; we
also introduce Dcl internal (or dependent) variables W µ : Ω × (0, tf ] → RDcl . We denote by
X and W suitable Hilbert spaces in Ω for Uµ and W µ, respectively. We denote by (w, v) the

inner product in X for all w, v ∈ X, and by ‖w‖ =
√

(w,w) the induced norm. We denote
by X0 the test set such that X0 = {v ∈ X : v|Γdir=0}, where Γdir denotes the portion of
the boundary associated with Dirichlet boundary conditions; we denote the time derivative as
∂tUµ ∈ L2(0, tf ;X

−1
0 ). Then, we introduce the PDE problem{

R(Uµ, ∂tUµ,W µ; v, µ) = 0, ∀ v ∈X0, t ∈ (0, tf ],

Ẇ µ = F(Uµ,W µ;µ), in Ω× (0, tf ],
(1)

The form R is associated to a nonlinear second-order in space, first-order in time differential op-
erator that is associated with the equilibrium equations, while F is a set of ordinary differential
equations (ODEs) that is associated with the constitutive laws.

We are interested in the prediction of the long-term behavior of temperature, pore water
pressure and solid displacement in the neighborhood of geological repositories for radioactive
waste disposal. Radioactive waste is placed in elongated repositories that are located deep
underground (≈ 300 − 500 [m]) and are responsible for a significant thermal flux towards the
Earth’s surface. The problem is modeled by the THM equations, which can be written in
the form (1). Typical parameters involve material properties, boundary conditions (e.g., the
thermal flux associated with each repository), and the number of repositories Qa (cf. Figure
1(a)). We refer to [7] for a detailed description of the problem of interest.

Changes in the number of repositories Qa induce a topology change in the computational do-
main that prevents the definition of a single reference configuration for all parameters and thus
the application of standard pMOR methods; we should hence develop CB-pMOR techniques
[6].

During the offline stage, a library of archetype components is defined, and local reduced-order
bases (ROBs) as well as local ROMs are built; then, during the online stage, local components
are instantiated to form the global system and the global solution is estimated by coupling
local ROMs. In Figure 1(b), we show how to decompose the global domain Ω considered in the
numerical experiments into an overlapping partition {Ωi}Ndd

i=1 for a given value of the geometric
parameter Qa; next to the instantiated subdomains, we depict the two archetype components
( ”internal” and ”external”) of the library.

CB-pMOR strategies consist of two distinct building blocks: (i) a rapid and reliable domain
decomposition (DD) strategy for online global predictions, and (ii) a localized training strategy
exclusively based on local solves for the construction of the local approximations. In this work,
we focus exclusively on (i); we refer to [1, 5, 13] for recent works on localized training for
nonlinear elliptic PDEs. Our work builds upon the component-based pMOR procedure dubbed
one-shot overlapping Schwarz (OS2) and proposed in [8] for steady PDEs. The key features
of the OS2 approach are twofold: (i) a constrained optimization statement that penalizes the
jump at the components’ interfaces subject to the approximate satisfaction of the PDE in each
instantiated component; (ii) the decomposition of the local solutions into a port component —
associated with the solution on interior boundaries (ports) — and a bubble component that
vanishes at ports, to enable effective parallelization of the online solver. Our optimization
statement might be interpreted as the limit of standard (multiplicative or additive) overlapping

2
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Figure 1: (a) domain Ω and boundaries Γr,1, . . . ,Γr,Qa associated to the repositories. In the
vertical (y) direction, the domain is split into three layers: a clay layer denoted as UA (”unité
argilleuse”), a transition layer UT (”unité de transition”) and a silt-carbonate layer USC (”unité
silto-carbonatée”); (b) overlapping partition used for CB-pMOR.

Schwarz (OS) methods: rather than performing alternate local solves in each subdomain, we
directly tackle the limit formulation.

2 Formulation

We discuss below the DD formulation of the THM problem (1). Due to the page limit, we do
not provide a detailed description of the PDE model and the temporal discretization. We refer
to [7] and [12] for a thorough presentation of the continuous and discrete models: the detailed
formulation of the THM continuous problem can be found in [7] in section 4.2 (both the equi-
librium equations (23a)− (26) and the constitutive laws (27a)− (27e) are introduced), together
with the boundary conditions at Eqs. (23a), (24a), (25a); the discrete model is presented in
section 4.3 (at Eqs. (31)− (32)).

2.1 Archetype components

We use the superscript (·)a to indicate quantities and spaces defined for a given archetype
component; we further denote by ` a generic element of the library L of archetype components.
We define the archetype components {Ωa

`}`∈L ⊂ Rd; we denote by Γa
` the portion of ∂Ωa

` that
lies inside the computational domain (“port”) (marked in purple in Figure 1(b)). For each
archetype component ` ∈ L, we define the local discrete high-fidelity (HF) finite element (FE)
space Xa

` ⊂ [H1

0,Γa,dir
`

(Ωa
`)]

D, the bubble space Xa
`,0 = {v ∈ Xa

` : v|Γa
`

= 0}, and the port

space Ua
` = {v|Γa

`
: v ∈ Xa

` } ⊂ [H1/2(Γa
`)]

D. We endow Xa
` with the inner product (·, ·)`

and the induced norm ‖ · ‖` =
√

(·, ·)`, we define Na
` = dim (Xa

` ), and the extension operator
Ea
` : Ua

` →Xa
` such that

(Ea
`w, v)` = 0 ∀ v ∈Xa

`,0, Ea
`w
∣∣
Γa
`

= w, ∀w ∈ Ua
` . (2)

3
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We define the vector of local parameters µ` in the parameter region P`, which include geometric
and material parameters that identify the physical model in any instantiated component of type
`. Furthermore, for any ` ∈ L, we define the parametric mapping Φa

` : Ωa
` × P` → Rd that

describes the deformation of the archetype component ` for the parameter value µ` ∈ P`.
We resort to an implicit Euler time discretization scheme based on the time grid {t(j)}Jmax

j=1

for the non-dimensional time interval (0, tf ], with tf = 1. We denote by U (j) and W (j) the
estimates of the state and internal variables at time tj, for j = 1, ..., Jmax. Given parameter

µ` ∈ P, for ` ∈ L, we define the time-discrete variational form R
a,(j)
` : Xa

` ×Xa
`,0 × P` → R

associated with the `th archetype component:

R
a,(j)
` (U (j), v;µ`) =Ra

` (U
(j), U (j−1),W (j),W (j−1), v;µ`)

=

Ne∑̀
k=1

∫
D`,k

ηa,e
` (U (j), U (j−1),W (j),W (j−1), v;µ`) dx

+

∫
∂D`,k

ηa,f
` (U (j), U (j−1),W (j),W (j−1), v;µ`) dx,

(3)

where {D`,k}
Ne

`
k=1 denote the elements of the FE mesh for the archetype component Ωa

` ; depen-

dence on the geometry is embedded in the local forms ηa,e
` , ηa,f

` , which involve the mapping Φa
` .

To simplify the notation, we omit the subscript µ on state solutions and internal variables and
we omit the dependence of the variational forms on the parameters.

2.2 Instantiated system

A physical system is uniquely described by a set of Ndd labels {Li}Ndd
i=1 ⊂ L, and the set of

parameters µ := (µ1, . . . , µNdd
) ∈ P :=

⊗Ndd

i=1 PLi . Given µ ∈ P, we define

(i) the mappings {Φi}Ndd
i=1 such that Φi = Φa

Li
(·;µi) for i = 1, . . . , Ndd;

(ii) the instantiated overlapping partition {Ωi = Φi(Ω
a
Li

)}Ndd
i=1 , the global open domain Ω ⊂ Rd

such that Ω =
⋃
i Ωi, the ports Γi = Φi(Γ

a
Li

) and the Dirichlet boundaries Γdir
i = Φi(Γ

a,dir
Li

),
for i = 1, . . . , Ndd;

(iii) the deployed FE full, bubble, and port spaces Xi = {v◦Φ−1
i : v ∈Xa

Li
}, Xi,0 = {v◦Φ−1

i :
v ∈Xa

Li,0
}, and Ui = {v|Γi

: v ∈Xi}, for i = 1, . . . , Ndd;

(iv) the extension operators Ei : Ui →Xi such that Eiw = Ea
Li

(w ◦ Φi)◦Φ−1
i for i = 1, . . . , Ndd;

(v) the deployed variational forms R
(j)
i : Xi ×Xi,0 → R such that

R
(j)
i (w, v) = R

a,(j)
Li

(w ◦ Φi, v ◦ Φi;µi). (4)

Given i = 1, . . . , Ndd, we further define the set of neighboring elements Neighi = {j : Ωj ∩Ωi 6=
∅, j 6= i}, and denote the partition of Γi as {Γi,j = Γi∩Ωj : j ∈ Neighi}— note that Γi,j 6= Γj,i.

Given the archetype mesh Ta
` =

(
{xa,v

`,j }
Nv

`
j=1, T`

)
, with nodes {xa,v

`,j }
Nv

`
j=1, connectivity ma-

trix T` and elements {Dk,`}
Ne

`
k=1, we denote by U a generic element of X` and we denote by

4
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U ∈ RDNv
` the corresponding FE vector associated with the Lagrangian basis of Ta

` , for
all ` ∈ L. Following [14], we pursue a discretize-then-map treatment of parameterized ge-
ometries: given the mesh Ta

Li
, we state the local variational problems in the deformed mesh

Φi

(
Ta
Li

)
=
(
{Φi

(
xa,v
j,Li

)
}
Nv

Li
j=1, TLi

)
. Note that if (Ta

` ,U) is associated with the element U ∈ X`,

then (Φi(T
a
` ),U) approximates U ◦ Φ−1.

2.3 Variational formulation

We denote as Ui the trajectory associated with solution
{
U

(j)
i

}Jmax

j=1
for each instantiated

component i = 1, . . . , Ndd. Given the set of parameters µ = (µ1, . . . , µNdd
) ∈ P, we seek

the global solution trajectory
−→
U =

{
U1, . . . ,UNdd

}
⊂ X =

⊗Ndd

i=1 Xi such that (for each

j = 1, . . . , Jmax)
−→
U =

{
U

(j)
1 , . . . , U

(j)
Ndd

}
solves the following constrained problem:

min−→
U⊂X

1

2

Ndd∑
i=1

∑
k∈Neighi

∥∥U (j)
i − U

(j)
k

∥∥2

L2(Γi,k)

s.t.

 R
(j)
i

(
U

(j)
i , V

)
= 0

W
(j
i = F(j)(U

(j)
i , U

(j−1)
i ,W

(j−1)
i )

for i = 1, . . . , Ndd.

(5)

Remark 1. The proposed optimization-based formulation is the limit of the (multiplicative or
additive) OS method, as clarified in [8, section 1.2], for a steady PDE problem. Indeed, if
we neglect the errors due to the local FE discretization, convergence of OS to a limit state(
U?

1 , . . . , U
?
Ndd

)
necessarily implies ‖U?,(j)

i − U?,(j)
k ‖L2(Γi∪Γk) = 0 for each couple of instantiated

subdomains i, k = 1, . . . , Ndd and each time step j = 1, . . . , Jmax. This observation motivates the
minimization of the jump of subsolutions at components’ interfaces in the one-shot formulation
(5).

Remark 2. In the objective function in (5) the jumps of solutions at components’ interfaces
only involve the state variables. The internal variables only come into play in the solution to
the local problems (cf. the constraints in (5)) at each subdomain Ωi, for i = 1, . . . , Ndd. Hence,
the OS2 formulation can be conveniently applied to systems with a large number of constitutive
laws and internal variables.

2.4 Reduced-order formulation

We recast the constrained problem (5) into an unconstrained problem through the procedure

described in [8]. We introduce the port state variables U
(j)
p,i ∈ Ui as the restriction of local

solutions U
(j)
i to the corresponding ports, and the internal variables W

(j)
i ∈ Wi. We define

the port-to-bubble maps for problems of type (3) and for each instantiated component i =

1, . . . , Ndd as F
(j)
i : Ui → Xi,0 as follows: given local port solutions U

(j)
p,i for each time step

j = 1, . . . , Jmax,

R
(j)
i

(
F

(j)
i

(
U

(j)
p,i

)
+ Ei

(
U

(j)
p,i

)
, v
)

= 0 ∀ v ∈Xi,0 (6)

for j = 1, . . . , Jmax. A local solution can indeed be written as

U
(j)
i = F

(j)
i

(
U

(j)
p,i

)
+ Ei

(
U

(j)
p,i

)
(7)

5
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for i = 1, . . . , Ndd. Equation (6) corresponds to a time discretization of a localized PDE problem

with U
(j)
p,i as a datum on the port boundary Γi at time t(j). The unconstrained formulation reads:

find
−→
U p =

(
Up,1 . . . ,Up,Ndd

)
that solves, for each j = 1, . . . , Jmax,

min−→
U p⊂U

1

2

Ndd∑
i=1

∑
k∈Neighi

∥∥∥U (j)
p,i − Ek

(
U

(j)
p,k

)
− F

(j)
k

(
U

(j)
p,k

)∥∥∥2

L2(Γi,k)
(8)

where U =
⊗Ndd

i=1 Ui. To introduce a low-dimensional reduced-order approximation, we rely
on Galerkin projection of the port-to-bubble maps. We refer to [8], section 2.3.2, for the
discussion about the construction of local low-dimensional archetype bubble and port spaces
and the statement of a reduced-order formulation of (8). We notice that the procedure described
in [8, section 2.3.2] easily generalizes to time-dependent coupled problems: notice that the
minimization formulation holds for each time step j = 1, . . . , Jmax; also, the constraints in (5)
are associated with a time-dependent coupled problem rather than a steady one. We denote
reduced port coefficients as β̂i : P × (0, tf ] → Rm and we define the vector of assembled port
coefficients as β = [β1, . . . ,βNdd

] ∈ RM , with the total dimension of the assembled port space
as M = mNdd.
The bubble reduced coefficients are denoted as α̂i : P × (0, tf ] → Rn and are s.t. α

(j)
i =

F̂
(j)

i (βi
(j)), where the total dimension of the assembled bubble space is denoted as N = nNdd.

We report the low-dimensional OS2 statement: for each time step j = 1, . . . , Jmax, find
β̂ = [β̂1, . . . , β̂Ndd

] ∈ RM such that

β̂ ∈ arg min
β∈RM

1

2

Ndd∑
i=1

∑
k∈Neighi

∥∥Zp
iβ

(j)
i − Z

p
kβ

(j)
k − Z

b
kF̂

(j)

k

(
β

(j)
k

)∥∥2

L2(Γi,k)
. (9)

As in [8], we can write problem (9) as

β̂ ∈ arg min
β∈RM

1

2
‖r(j)(β)‖2

2 (10)

where r(j)(β) = PF̂(j)(β) + Qβ for suitable linear operators P and Q.

As for the application of hyper-reduction methods for the efficient approximation of local
port-to-bubble maps, we refer to [8, section 2.3.2].

3 Solution to OS2 minimization problem

We describe in Algorithm 1 the overall procedure, which relies on Gauss-Newton method, to
solve the unconstrained low-dimensional problem (9). The computation of the initial conditions
for the THM problem is discussed in [7, section 4.2.1] and [12, section 6.2.3].

We observe that the internal for-loop block from line 4 to line 14 corresponds to block 3−13
in Algorithm 2 in [8]; here we extend the iterative procedure due to the need to i) update state
and internal variables at each time step j (cf. line 15), ii) update the reduced port coefficients

(cf. line 18). The Jacobian of the global port-to-bubble map is F̂
(j)

: RM → RN is

6
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Algorithm 1 Solution to (9) through the Gauss-Newton method.

Inputs: α(0) = [α
(0)
1 , . . . ,α

(0)
Ndd

], β(0) = [β
(0)
1 , . . . ,β

(0)
Ndd

] initial conditions, U(0), W(0), tol > 0, maxit,
Jmax.

Outputs:
{
Û

(j)
1

}Jmax

j=1
, . . . ,

{
Û

(j)
Ndd

}Jmax

j=1
.

1: Compute the matrices P,Q in (10).

2: Set β̂
(0)

= β(0) and α̂ = α(0).

3: for j = 1, . . . , Jmax do
4: for k = 1, . . . , maxit do
5: for i = 1, . . . , Ndd do
6: Solve R̂

(j)
i (αi,β

(k)
i ) = 0 using Newton’s method with initial condition α̂i.

7: Compute ĴFi

(
β

(k)
i

)
(cf. (11)).

8: end for

9: Update α̂ = [α1, . . . ,αNdd
].

10: Compute r(k),(j) = Pα̂ + Qβ̂
(k)

i and ∇r(k),(j) = PĴF + Q.

11: Compute β̂
(k+1)

= β̂
(k)
−
(
∇r(k),(j)

)†
r(k),(j).

12: if ‖β̂
(k+1)

− β̂
(k)
‖2 < tol‖β̂

(k)
‖2 then, BREAK

13: end if
14: end for

15: Update U
(j−1)
i and W

(j−1)
i for i = 1, . . . , Ndd to be used at line 6.

16: Update α̂ s.t. α̂i = F̂
(j)

i (β̂i) to be used at line 6.

17: Store Û
(j)
i = Zb

i α̂i + Zp
i β̂i for i = 1, . . . , Ndd.

18: Save β̂
(0)

= β̂.
19: end for

20: Return
{
Û

(j)
1

}Jmax

j=1
, . . . ,

{
Û

(j)
Ndd

}Jmax

j=1
.

Ĵ
(j)
F (β) = diag

[
ĴF1(β1), . . . , ĴFNdd

(βNdd
)
]
, (11a)

which is block-diagonal. Each component for i = 1, . . . , Ndd is defined as

ĴFi(βi) := −
(
∂αi

R̂
(j)
i

)−1

∂βi
R̂

(j)
i

∣∣∣
(αi,βi) = (F̂

(j)
i (βi),βi)

. (11b)

Remark 3. The Gauss-Newton method solves a least-square problem of size M and requires
to fully assemble ĴF. Therefore, the Gauss-Newton method is expected to be feasible if the
dimension of the reduced port spaces is moderate.

As a reference, we consider in Algorithm 2 the multiplicative overlapping Schwarz method
with Dirichlet interface conditions (cf. [7] for the proposed OS procedure for steady PDEs).

7
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Notice that in Algorithm 2 the internal variables come into play in the evaluation of the port-
to-bubble maps at line 6 and 7; also, the for loop at lines 5-8 is not parallelizable as opposed
to the corresponding loop of the OS2 solver (cf. lines 5-8 in Algorithm 1).

Algorithm 2 Overlapping Schwarz method.

Inputs: α(0) = [α
(0)
1 , . . . ,α

(0)
Ndd

], β(0) = [β
(0)
1 , . . . ,β

(0)
Ndd

] initial conditions, tol > 0, maxit.

Outputs:
{
Û

(j)
1

}Jmax

j=1
, . . . ,

{
Û

(j)
Ndd

}Jmax

j=1
.

1: Set β̂
(0)

= β(0) and α̂(0) = α(0).

2: for j = 1, . . . , Jmax do
3: for k = 1, . . . , maxit do

4: Initialize α̂(k) = α̂(k−1) and β̂
(k)

= β̂
(k−1)

.

5: for i = 1, . . . , Ndd do

6: Update β̂
(k)

i ∈ arg minβ∈Rm

∑
g∈Neighi

‖W p
i β − Zb

g F̂
eq,(j)

g (β̂
(k)

g ) − W p
g β̂

(k)

g ‖2
L2(Γi,g).

7: Update α̂
(k)
i = F̂

eq,(j)

i (β̂
(k)

i ).
8: end for

9: if ‖β̂
(k)
− β̂

(k−1)
‖2 < tol‖β̂

(k)
‖2 then, BREAK

10: end if
11: end for
12: Update state and internal variables at iteration j − 1 (for evaluation of F̂

eq,(j)

i at line 6
and 7).

13: Store Û
(j)
i = Zb

i α̂
(k)
i + Zp

i β̂
(k)

i for each i = 1, . . . , Ndd.
14: end for

4 Numerical results

The FE discretization is characterized by N e
int = 1120 and N e

ext = 3960 elements. We adopt
structured meshes in the archetype components that enable logarithmic-in-N v

` FE interpola-
tions. In all the numerical results we consider FE polynomial degree p = 2 for displacement,
pressure and temperature. The FE space X and the spaces Xa

` are equipped with the weighted
inner product

(U,U ′) =
2∑
d=1

1

λud

(ud, u
′
d)H1(Ω) +

1

λp

(pw, p
′
w)H1(Ω) +

1

λt

(T, T ′)H1(Ω). (12)

In the case of the global space X, we consider as coefficients λu1 , λu2 , λp, λt the largest eigen-
values of the Gramian matrices Cux , Cuy , Cp, Ct associated to horizontal and vertical displace-
ment, pressure and temperature, respectively. In the case of the local archetype components,
we choose scaling factors λu1 , λu2 , λp, λt based on the order of magnitude of the state variables
(ux, uy, pw, T ) in the global solution at final time Jmax and at µ̄ = [1.088·103, 0.3, 21.33, 0.4558]T

8
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(which is the centroid of the training set). These choices are motivated by the need for prop-
erly taking into account the contributions of displacement, pressure and temperature, which
are characterised by different magnitudes. The monolithic structured mesh is characterized by
N e = 16896 elements. We consider a vector of four non-dimensional parameters: the Young’s
modulus EY and the Poisson’s ratio ν in the region UA (cf. Figure 1(a)), the thermic factor
τ and the constant Cal in the detailed mathematical formulation in [7](section 4.2). For all
parameters, we construct the non-dimensional parameter domain P by considering variations
of ±8% with respect to the nominal values of EY, ν, τ and Cal reported in [7, Table 4]: the
centroid of the parametric set P is given by µ = µ̄.

We train the CB-ROM based on ntrain = 10 global parameters in Ξtrain = {µ(k)}ntrain
k=1 such

that (
E

(k)
Y , ν(k), C

(k)
al , τ

(k)
)

iid∼ Uniform
(
[928.1416, 1.0896 · 103]× [0.2760, 0.3240]

×[4.9066, 5.7600]× [0.4193, 0.4922]
)
,

(13)

and
Q(k)

a
iid∼ Uniform ({2, . . . , 7}) ,

where the role of the parameters E
(k)
Y , µ

(k)
1 , C

(k)
al , τ

(k) in system (1) is specified in [7]. We assess
performance based on ntest = 5 out-of-sample global parameters Ξtest = {µ̃(k)}ntest

k=1 generated by
the same distribution (13). The non-dimensional time interval (0, tf ] is divided into Jmax = 20
uniform time steps of length ∆t = 0.05; the high-fidelity solutions are stored in the training
phase at sampling times in Is ⊆ {1, . . . , Jmax}. We set |Is| = 20 and the same values for the
computation and saving time-steps ∆ts = ∆t = 0.05. In view of the assessment, we also define
the PoU {φi}Ndd

i=1 ⊂ Lip(Ω;R) associated with the partition {Ωi}Ndd
i=1 such that

Ndd∑
i=1

φi(x) = 1,

{
0 ≤ φi(x) ≤ 1 ∀x ∈ Ω,

φi(x) = 0 ∀x /∈ Ωi,
i = 1, . . . , Ndd.

Given u ∈X :=
⊗Ndd

i=1 Xi, we define the Partition of Unity operator

Ppu[u] :=

Ndd∑
i=1

φi ui ∈ H1(Ω). (14)

We define the out-of-sample average prediction error:

E :=
1

ntest

∑
µ∈Ξtest

√∑Jmax

j=1 (t(j) − t(j−1))
∥∥Ppu[U (j)]− Ppu[Û

(j)
]
∥∥2

X√∑Jmax

j=1 (t(j) − t(j−1))
∥∥Ppu[U (j)]

∥∥2

X
,

(15)

where {Û
(j)
}j is found by solving a ROM by OS2 method. We present the best-fit error

Ebf :=
1

ntest

∑
µ∈Ξtest

√∑Jmax

j=1 (t(j) − t(j−1))
∥∥Ppu[U (j)]− Û

(j)

bf

∥∥2

X√∑Jmax

j=1 (t(j) − t(j−1))
∥∥Ppu[U (j)]

∥∥2

X

, (16)

Û
(j)

bf = ΠZglo
Ppu[U (j)] (17)

9
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where we denote the globally-defined reduced space as Zglo = span{Ppu[ζ
i
◦ Φ−1

i ] : ζ
i
∈ Z

a,b
Li
∪

Z
a,p
Li
, i = 1, . . . Ndd}.

In Figure 2a we show the state estimation error (15) between the solution found by OS2 ROM
with HF quadrature and the high-fidelity solution (which is computed by OS2 method with HF
solve). Also the best-fit error (16) is depicted with respect to increasing values of bubble and
port modes (m = n). In Figure 2b we depict the average (in time and over the test parameters)
values of the objective functions at Gauss-Newton convergence (cf. line 12) in Algorithm 1).
We set tol = 10−5 in Algorithm 1 and we set a threshold for the objective function value
equal to 10−11. We consider the same termination criterion for the Gauss-Newton solver and
the OS solver; for the solution of port-to-bubble maps, we set a Newton’s tolerance of 10−9.
For the hyper-reduced OS2, we set an empirical quadrature tolerance of toleq = 10−12, which
corresponds to the sampling of approximately 19% of elements in the internal component Ωa

int

and 4% of elements in the external component Ωa
ext. The OS2 method endowed with empirical
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Figure 2: Performance of the OS2 method compared to solution projection for increasing
dimensions of the local port and bubble reduced bases (m = n).

quadrature on the port-to-bubble maps achieves an out-of-sample prediction accuracy of 0.3%
for n = 15; the corresponding average time cost is around 1/4 of the cost associated with
high-fidelity quadrature. We notice in 2a that for increasing values of n, the error decay
of OS2 is significantly slower than the one associated with the best-fit error: we conjecture
that this behaviour might be related to the coupling of very dissimilar scales in Algorithm
1. Nevertheless, the average value of the objective function at optimality (cf. figure 2b)
demonstrates good convergence properties of the OS2 procedure in Algorithm 1. We also
compute the speed-up factor of the hyper-reduced OS2 solver with respect to the monolithic
P2-HF solve for µ ∈ Ξtest: we find an average value of 212 for n = 15 and m = n. Figure
3 shows (for n = 15 and m = n) the decay of the average value of the objective function in
a predictive case until the termination criterion is met. The largest number of OS iterations
corresponds to the first time steps; furthermore, OS2 seems to require many fewer iterations
(for all the time steps) than OS and to achieve a better accuracy in the minimization process.

5 Conclusions

In this work we developed and numerically validated the one-shot overlapping Schwarz (OS2)
approach to component-based MOR for time-dependent nonlinear coupled problems (in partic-
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OS-tj
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Figure 3: Convergence of OS and OS2 (without hyper-reduction) for time steps j = 1, . . . , Jmax

and for a fixed dimension of the bubble reduced spaces n = 15 and m = n.

ular, thermo-hydro-mechanical (THM) systems arising in radioactive waste applications). This
work reads as a prolongation of [8]: we extended the OS2 formulation to unsteady problems and
we devised a specialized implementation to deal with internal variables. For the THM problem
of interest, the developed method reduces online costs by a factor in the range of [1.7, 4.11] ·102

compared to a standard monolithic FE model with a prediction error of the order of 0.3% (for
n = m = 15), and resorting to no parallelization of the online ROM solver.
We aim to extend the approach in several directions. We aim at better exploiting the con-
nection between the proposed OS2 method and the (multiplicative or additive) overlapping
Schwarz method in particular for nonlinear and time-dependent problems. Also, we aim at
combining our approach with the recently-developed OS method discussed in [9]. We wish to
devise localized training techniques to avoid the solution to global HF problems at the training
phase: we aim to extend the approach in [13] to unsteady PDEs with internal variables. Also,
we would investigate the possibility of generalizing our approach to non-overlapping decom-
positions (cf. [2],[3] ): this would enable the coupling of different physical models in different
subdomains. Finally, as in a recent work in [10], we aim to combine projection-based ROMs
with data-driven methods for multi-scale problems: machine-learning techniques would mit-
igate the computational effort in domain regions where accuracy constraints usually require
intensive FE simulations.
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